81 research outputs found

    DBI with Primordial Magnetic Field in the Sky

    Full text link
    In this paper, we study the generation of a large scale magnetic field with amplitude of order μ\muG in an inflationary model which has been introduced in hep-th/0310221. This inflationary model based on existence of a speed limit for inflaton field. Generating a mass for inflaton at scale above the ϕIR\phi_{IR}, breaks the conformal triviality of the Maxwell equation and causes to originate a magnetic field during the inflation. The amplitude strongly depends on the details of reheating stage and also depends on the e-foldings parameter N. We find the amplitude of the primordial magnetic field at decoupling time in this inflationary background using late time behavior of the theory.Comment: 12 pages, no figure, typos correcte

    Nambu-Poisson Bracket and M-Theory Branes Coupled to Antisymmetric Fluxes

    Full text link
    By using the recently proposed prescription arXiv:0804.3629 for obtaining the M5M5 brane action from multiple M2M2 branes action in BLG theory, we examine such transition when 11 Dimensional background antisymmetric fluxes couple to the M2M2 brane world volume. Such couplings was suggested in arXiv:0805.3427 where it was used the fact that various fields in BLG theory are valued in a Lie 3-algebra. We argue that this action and promoting it by Nambu-Poisson bracket gives the expected coupling of fluxes with M5M5 brane at least at weak coupling limit. We also study some other aspects of the action for example, the gauge invariance of the theory.Comment: 14 page

    A new homatropine potentiometric membrane sensor as a useful device for homatropine hydrobromide analysis in pharmaceutical formulation and urine: a computational study

    Full text link
    Homatropine (Equipin, Isopto Homatropine) is an anticholinergic medication that inhibits muscarinic acetylcholine receptors and thus the parasympathetic nervous system. It is available as the hydrobromide or methylbromide salt. In this study, a potentiometric liquid membrane sensor for simple and fast determination of homatropine hydrobromide in pharmaceutical formulation and urine was constructed. For the membrane preparation, homatropine-tetraphenylborate complexes were employed as electroactive materials in the membrane. The proposed sensor presents wide linear range (10-5-10-1 mol L-1), low detection limit (8×10-6 mol L-1), and fast response time (ca. 10 s). Validation of the method shows suitability of the sensors for applicability in the quality control analysis of homatropine hydrobromide in pharmaceutical formulation and urine
    corecore