24 research outputs found

    The organophosphate pesticide chlorpyrifos affects form deprivation myopia

    Get PDF
    PURPOSE. The effects of the anticholinesterase organophosphate pesticide chlorpyrifos (CPF) on the refractive development of the eye were examined. Form deprivation was used to induce eye growth to address the previously reported relationship between organophosphate pesticide use and the incidence of myopia. METHODS. Chickens, a well-established animal model for experimental myopia and organophosphate neurotoxicity, were dosed with chlorpyrifos (3 mg/kg per day, orally, from day 2 to day 9 after hatching) or corn oil vehicle (VEH) with or without monocular form deprivation (MFD) over the same period. The set of dependent measures included the refractive state of each eye measured using retinoscopy, axial dimensions determined with A-scan ultrasound, and intraocular pressure. RESULTS. Dosing with CPF yielded an inhibition of 35% butyrylcholinesterase in plasma and 45% acetylcholinesterase in brain. MFD resulted in a significant degree of myopia in form-deprived eyes resulting from significant lengthening of the vitreal chamber of the eye. CPF significantly reduced the effect of MFD, resulting in less myopic eyes (mean refraction: VEH-MFD = -16.2 ± 2.3 diopters; CPF-MFD = - 11.1 ± 1.8 diopters) with significantly shorter vitreal chambers. Nonoccluded eyes were, on average, slightly hyperopic. Treatment with CPF for 1 week in the absence of MFD led to no significant change in ocular dimensions or refraction relative to controls. CONCLUSIONS. The use of form deprivation as a challenge suggests that CPF treatment interferes with the visual regulation of eye growth

    Organophosphorus Ester-Induced Chronic Neurotoxicity

    No full text

    <i>de novo</i> Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins

    No full text
    Autism spectrum disorders (ASDs) are the most common neurodevelopmental disorders with unidentified etiology. The behavioral manifestations of ASD may be a consequence of genetic and/or environmental pathology in neurodevelopmental processes. In this limited study, we assayed autoantibodies to a panel of vital neuronal and glial proteins in the sera of 40 subjects (10 children with ASD and their mothers along with 10 healthy controls, age-matched children and their mothers). Serum samples were screened using Western Blot analysis to measure immunoglobulin (IgG) reactivity against a panel of 9 neuronal proteins commonly associated with neuronal degeneration: neurofilament triplet proteins (NFP), tubulin, microtubule-associated proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), &#945;-synuclein (SNCA) and astrocytes proteins such as glial fibrillary acidic protein (GFAP) and S100B protein. Our data show that the levels of circulating IgG class autoantibodies against the nine proteins were significantly elevated in ASD children. Mothers of ASD children exhibited increased levels of autoantibodies against all panel of tested proteins except for S100B and tubulin compared to age-matched healthy control children and their mothers. Control children and their mothers showed low and insignificant levels of autoantibodies to neuronal and glial proteins. These results strongly support the importance of anti-neuronal and glial protein autoantibodies biomarker in screening for ASD children and further confirm the importance of the involvement of the maternal immune system as an index that should be considered in fetal in utero environmental exposures. More studies are needed using larger cohort to verify these results and understand the importance of the presence of such autoantibodies in children with autism and their mothers, both as biomarkers and their role in the mechanism of action of autism and perhaps in its treatment

    Tubulin and Tau: Possible targets for diagnosis of Parkinson's and Alzheimer's diseases.

    No full text
    Neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by progressive neuronal loss and pathological accumulation of some proteins. Developing new biomarkers for both diseases is highly important for the early diagnosis and possible development of neuro-protective strategies. Serum antibodies (AIAs) against neuronal proteins are potential biomarkers for AD and PD that may be formed in response to their release into systemic circulation after brain damage. In the present study, two AIAs (tubulin and tau) were measured in sera of patients of PD and AD, compared to healthy controls. Results showed that both antibodies were elevated in patients with PD and AD compared to match controls. Curiously, the profile of elevation of antibodies was different in both diseases. In PD cases, tubulin and tau AIAs levels were similar. On the other hand, AD patients showed more elevation of tau AIAs compared to tubulin. Our current results suggested that AIAs panel could be able to identify cases with neuro-degeneration when compared with healthy subjects. More interestingly, it is possible to differentiate between PD and AD cases through identifying specific AIAs profile for each neurodegenerative states

    Tubulin and Tau: Possible targets for diagnosis of Parkinson’s and Alzheimer’s diseases

    No full text
    <div><p>Neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD) are characterized by progressive neuronal loss and pathological accumulation of some proteins. Developing new biomarkers for both diseases is highly important for the early diagnosis and possible development of neuro-protective strategies. Serum antibodies (AIAs) against neuronal proteins are potential biomarkers for AD and PD that may be formed in response to their release into systemic circulation after brain damage. In the present study, two AIAs (tubulin and tau) were measured in sera of patients of PD and AD, compared to healthy controls. Results showed that both antibodies were elevated in patients with PD and AD compared to match controls. Curiously, the profile of elevation of antibodies was different in both diseases. In PD cases, tubulin and tau AIAs levels were similar. On the other hand, AD patients showed more elevation of tau AIAs compared to tubulin. Our current results suggested that AIAs panel could be able to identify cases with neuro-degeneration when compared with healthy subjects. More interestingly, it is possible to differentiate between PD and AD cases through identifying specific AIAs profile for each neurodegenerative states.</p></div
    corecore