51 research outputs found

    The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) <it>in vitro </it>and the <it>in vivo </it>development of melanoma in mice after laser irradiation.</p> <p>Methods</p> <p>We performed a controlled <it>in vitro </it>study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The <it>in vivo </it>mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm<sup>2</sup>, irradiance 2.5 W/cm<sup>2 </sup>and irradiation times of 60s (dose 150 J/cm<sup>2</sup>) and 420s (dose 1050 J/cm<sup>2</sup>) respectively.</p> <p>Results</p> <p>There were no statistically significant differences between the <it>in vitro </it>groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the <it>in vivo </it>experiment where outcome measures for the 150 J/cm<sup>2 </sup>dose group were not significantly different from controls. For the 1050 J/cm<sup>2 </sup>dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups.</p> <p>Conclusion</p> <p>LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm<sup>2</sup>) and high dose (1050 J/cm<sup>2</sup>) significantly increases melanoma tumor growth <it>in vivo</it>.</p

    Towards improved cover glasses for photovoltaic devices

    Get PDF
    For the solar energy industry to increase its competitiveness there is a global drive to lower the cost of solar generated electricity. Photovoltaic (PV) module assembly is material-demanding and the cover glass constitutes a significant proportion of the cost. Currently, 3 mm thick glass is the predominant cover material for PV modules, accounting for 10-25% of the total cost. Here we review the state-of-the-art of cover glasses for PV modules and present our recent results for improvement of the glass. These improvements were demonstrated in terms of mechanical, chemical and optical properties by optimizing the glass composition, including addition of novel dopants, to produce cover glasses that can provide: (i) enhanced UV protection of polymeric PV module components, potentially increasing module service lifetimes; (ii) re-emission of a proportion of the absorbed UV photon energy as visible photons capable of being absorbed by the solar cells, thereby increasing PV module efficiencies; (iii) Successful laboratory-scale demonstration of proof-of-concept, with increases of 1-6% in Isc and 1-8% Ipm. Improvements in both chemical and crack resistance of the cover glass were also achieved through modest chemical reformulation, highlighting what may be achievable within existing manufacturing technology constraints

    Comparative analysis of IGU spacers using a guarded hot box

    No full text
    To exploit in full the energy saving potential of high thermal resistance IGUs, they have to be coupled with systems which have high thermal performances as well. Traditional metal spacers can double the thermal transmittance of the edge area against the central area of the IGU and even using “warm edge” spacers the heat loss at the edge area is greater than in the center of the glazing. Nowadays there are several types of double-glazing spacer on the market differing form each other in the materials used. This paper took aim at getting characterization of the thermal performance of some commercial types of double-glazing spacer claimed having low thermal transmittance. Full scale specimens (1000 mm x 800 mm) were tested by Stazione Sperimentale del Vetro using the hot box apparatus of the VeniceIUAV University of Architecture. First results are presented

    La trasmittanza termica delle vetrate isolanti Glass in building

    No full text
    Gli elementi vetrati costituiscono una parte fondamentale dell'involucro degli edifici e da essi dipendono le condizioni di comfort ambientale interno e i consumi energetici per il riscaldamento invernale e per il condizionamento estivo. Per la loro caratterizzazione termica il parametro fondamentale è costituito dalla trasmittanza, detta anche "U-value" indicata con il simbolo "U" (nel passato con K). All’uso molto diffuso di tale grandezza nella filiera della produzione e utilizzazione del vetro piano non corrisponde una eguale diffusa consapevolezza riguardo al suo significato fisico. Allo stesso modo si può dire che nonostante la procedura di calcolo della trasmittanza sia descritto nella UNI EN 673 essa non è ben conosciuta dagli utilizzatori e spesso ci si limita per la sua determinazione, a una applicazione acritica di software commerciali. Ancora meno note sono poi le procedure di caratterizzazione sperimentale con utilizzo di piastra calda (UNI EN 674 e UNI EN 675) e doppia camera con anello di guardia (UNI EN 8990, UNI EN 12412-2, UNI EN 12567-1)

    La trasmittanza delle vetrate isolanti parte 2

    No full text
    Nel mercato esistono ormai una grande varietà di sistemi vetrati e di telai. E' fondamentale per una corretta scelta del tipo di vetrazione connoscere il significato dei parametri utilizzati. Si riportano a grandi linee gli elementi fondamentali delle tecniche di caratterizzazione di un sistema vetrato secondo UNI EN 673 e 67
    corecore