16 research outputs found

    Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation.

    Full text link
    peer reviewedKEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression

    Data from: Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway

    No full text
    The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenetics in non-model species. Our results reveal that hundreds of acylsugars are produced across the Solanaceae family and even within a single plant, revealing this phenotype to be hyper-diverse. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored

    Data from: Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species

    No full text
    Polyploidization events are frequent among flowering plants, and the duplicate genes produced via such events contribute significantly to plant evolution. We sequenced the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species that experienced a whole-genome triplication event prior to diverging from Brassica rapa. Despite substantial gene gains in these two species compared with Arabidopsis thaliana and Arabidopsis lyrata, ∼70% of the orthologous groups experienced gene losses in R. raphanistrum and B. rapa, with most of the losses occurring prior to their divergence. The retained duplicates show substantial divergence in sequence and expression. Based on comparison of A. thaliana and R. raphanistrum ortholog floral expression levels, retained radish duplicates diverged primarily via maintenance of ancestral expression level in one copy and reduction of expression level in others. In addition, retained duplicates differed significantly from genes that reverted to singleton state in function, sequence composition, expression patterns, network connectivity, and rates of evolution. Using these properties, we established a statistical learning model for predicting whether a duplicate would be retained postpolyploidization. Overall, our study provides new insights into the processes of plant duplicate loss, retention, and functional divergence and highlights the need for further understanding factors controlling duplicate gene fate
    corecore