266 research outputs found

    E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV

    Get PDF
    We present final results on the photon electroproduction ((e) over right arrowp - \u3e ep gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q(2) and x(B) dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q(2) dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-

    Exclusive neutral pion electroproduction in the deeply virtual regime

    Get PDF
    We present measurements of the ep -\u3e ep pi(0) cross section extracted at two values of four-momentum transfer Q(2) = 1.9 GeV(2) and Q(2) = 2.3 GeV(2) at Jefferson Lab Hall A. The kinematic range allows one to study the evolution of the extracted cross section as a function of Q(2) and W. Results are confronted with Regge-inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed

    Production of highly-polarized positrons using polarized electrons at MeV energies

    Full text link
    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-ZZ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/cc, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.Comment: 5 pages, 4 figure

    JLab Measurement of the 4^4He Charge Form Factor at Large Momentum Transfers

    Get PDF
    The charge form factor of ^4He has been extracted in the range 29 fm2^{-2} Q277\le Q^2 \le 77 fm2^{-2} from elastic electron scattering, detecting 4^4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2Q^2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure

    JLab Measurements of the 3He Form Factors at Large Momentum Transfers

    Get PDF
    The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem

    Low Q^2 measurements of the proton form factor ratio mupGE/GMmu_p G_E / G_M

    Get PDF
    We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction from Jefferson Lab "LEDEX" experimen

    The Proton Elastic Form Factor Ratio at Low Momentum Transfer

    Full text link
    High precision measurements of the proton elastic form factor ratio have been made at four-momentum transfers, Q^2, between 0.2 and 0.5 GeV^2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q^2 range the deviation from unity is primarily due to GEp being smaller than the dipole parameterization.Comment: 5 pages, 2 figure

    Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values

    Full text link
    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics

    Precision Measurement of the Neutron Spin Asymmetry A1nA_1^n and Spin-Flavor Decomposition in the Valence Quark Region

    Full text link
    We have measured the neutron spin asymmetry A1nA_1^n with high precision at three kinematics in the deep inelastic region at x=0.33x=0.33, 0.47 and 0.60, and Q2=2.7Q^2=2.7, 3.5 and 4.8 (GeV/c)2^2, respectively. Our results unambiguously show, for the first time, that A1nA_1^n crosses zero around x=0.47x=0.47 and becomes significantly positive at x=0.60x=0.60. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.Comment: 5 pages, 2 figures, this is the final version appeared in Phys. Rev. Let
    corecore