1,167 research outputs found
Bipartite partial duals and circuits in medial graphs
It is well known that a plane graph is Eulerian if and only if its geometric
dual is bipartite. We extend this result to partial duals of plane graphs. We
then characterize all bipartite partial duals of a plane graph in terms of
oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric
Bibliography on Optical Information and Data Processing
Bibliography on optical information and data processin
Unplugging the Universe: the neglected electromagnetic consequence of decoupling
This letter concentrates on the non-equilibrium evolution of magnetic field
structures at the onset of recombination, when the charged particle current
densities decay as neutrals are formed.
We consider the effect that a decaying magnetic flux has on the acceleration
of particles via the transient induced electric field. Since the residual
charged-particle number density is small as a result of decoupling, we shall
consider the magnetic and electric fields essentially to be imposed, neglecting
the feedback from any minority accelerated population.
We find that the electromagnetic treatment of this phase transition can
produce energetic electrons scattered throughout the Universe. Such particles
could have a significant effect on cosmic evolution in several ways: (i) their
presence could delay the effective end of the recombination era; (ii) they
could give rise to plasma concentrations that could enhance early gravitational
collapse of matter by opposing cosmic expansion to a greater degree than
neutral matter could; (iii) they could continue to be accelerated, and become
the seed for reionisation at the later epoch .Comment: 4 pages, no figure
Gauge vortex dynamics at finite mass of bosonic fields
The simple derivation of the string equation of motion adopted in the
nonrelativistic case is presented, paying the special attention to the effects
of finite masses of bosonic fields of an Abelian Higgs model. The role of the
finite mass effects in the evaluation of various topological characteristics of
the closed strings is discussed. The rate of the dissipationless helicity
change is calculated. It is demonstrated how the conservation of the sum of the
twisting and writhing numbers of the string is recovered despite the changing
helicity.Comment: considerably revised to include errata to journal versio
The power of heartbeats through the lens of ι Orionis
O star asteroseismology is a relatively new field which has not been able to gain significant traction due in large part to the lack of known pulsators in addition to the relatively sparse number of frequencies detected in those pulsators. This is likely due to a combination of factors, chief among them long frequencies, on the order of days, and weak amplitudes (≈ 1 mmag and below). Fortunately, through the discovery of the most massive heartbeat system ι Orionis and it's corresponding tidally induced oscillations with BRITE-Constellation there exists a new avenue with which to explore O star asteroseismology. In this paper we will give a prescription for using tidally induced oscillations to do asteroseismic analysis on O stars and present a list of candidate systems for this analysis within the BRITE sample
Towards an experimental von Karman dynamo: numerical studies for an optimized design
Numerical studies of a kinematic dynamo based on von Karman type flows
between two counterrotating disks in a finite cylinder are reported. The flow
has been optimized using a water model experiment, varying the driving
impellers configuration. A solution leading to dynamo action for the mean flow
has been found. This solution may be achieved in VKS2, the new sodium
experiment to be performed in Cadarache, France. The optimization process is
described and discussed, then the effects of adding a stationary conducting
layer around the flow on the threshold, on the shape of the neutral mode and on
the magnetic energy balance are studied. Finally, the possible processes
involved into kinematic dynamo action in a von Karman flow are reviewed and
discussed. Among the possible processes we highlight the joint effect of the
boundary-layer radial velocity shear and of the Ohmic dissipation localized at
the flow/outer-shell boundary
Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates
Depinning of two-dimensional liquid ridges and three-dimensional drops on an
inclined substrate is studied within the lubrication approximation. The
structures are pinned to wetting heterogeneities arising from variations of the
strength of the short-range polar contribution to the disjoining pressure. The
case of a periodic array of hydrophobic stripes transverse to the slope is
studied in detail using a combination of direct numerical simulation and
branch-following techniques. Under appropriate conditions the ridges may either
depin and slide downslope as the slope is increased, or first breakup into
drops via a transverse instability, prior to depinning. The different
transition scenarios are examined together with the stability properties of the
different possible states of the system.Comment: Physics synopsis link:
http://physics.aps.org/synopsis-for/10.1103/PhysRevE.83.01630
Analytical theory of forced rotating sheared turbulence: The perpendicular case
Rotation and shear flows are ubiquitous features of many astrophysical and geophysical bodies. To understand their origin and effect on turbulent transport in these systems, we consider a forced turbulence and investigate the combined effect of rotation and shear flow on the turbulence properties. Specifically, we study how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles and momentum, and the anisotropy in these quantities. In all the cases considered, turbulence amplitude is always quenched due to strong shear (ξ=νky2/A⪡1, where A is the shearing rate, ν is the molecular viscosity, and ky is a characteristic wave number of small-scale turbulence), with stronger reduction in the direction of the shear than those in the perpendicular directions. Specifically, in the large rotation limit (Ω⪢A), they scale as A−1 and A−1|ln ξ|, respectively, while in the weak rotation limit (Ω⪡A), they scale as A−1 and A−2/3, respectively. Thus, flow shear always leads to weak turbulence with an effectively stronger turbulence in the plane perpendicular to shear than in the shear direction, regardless of rotation rate. The anisotropy in turbulence amplitude is, however, weaker by a factor of ξ1/3|ln ξ| (∝A−1/3|ln ξ|) in the rapid rotation limit (Ω⪢A) than that in the weak rotation limit (Ω⪡A) since rotation favors almost-isotropic turbulence. Compared to turbulence amplitude, particle transport is found to crucially depend on whether rotation is stronger or weaker than flow shear. When rotation is stronger than flow shear (Ω⪢A), the transport is inhibited by inertial waves, being quenched inversely proportional to the rotation rate (i.e., ∝Ω−1) while in the opposite case, it is reduced by shearing as A−1. Furthermore, the anisotropy is found to be very weak in the strong rotation limit (by a factor of 2) while significant in the strong shear limit. The turbulent viscosity is found to be negative with inverse cascade of energy as long as rotation is sufficiently strong compared to flow shear (Ω⪢A) while positive in the opposite limit of weak rotation (Ω⪡A). Even if the eddy viscosity is negative for strong rotation (Ω⪢A), flow shear, which transfers energy to small scales, has an interesting effect by slowing down the rate of inverse cascade with the value of negative eddy viscosity decreasing as |νT|∝A−2 for strong shear. Furthermore, the interaction between the shear and the rotation is shown to give rise to a nondiffusive flux of angular momentum (Λ effect), even in the absence of external sources of anisotropy. This effect provides a mechanism for the existence of shearing structures in astrophysical and geophysical systems
Resolving singular forces in cavity flow: Multiscale modeling from atoms to millimeters
A multiscale approach for fluid flow is developed that retains an atomistic
description in key regions. The method is applied to a classic problem where
all scales contribute: The force on a moving wall bounding a fluid-filled
cavity. Continuum equations predict an infinite force due to stress
singularities. Following the stress over more than six decades in length in
systems with characteristic scales of millimeters and milliseconds allows us to
resolve the singularities and determine the force for the first time. The
speedup over pure atomistic calculations is more than fourteen orders of
magnitude. We find a universal dependence on the macroscopic Reynolds number,
and large atomistic effects that depend on wall velocity and interactions.Comment: 4 pages,3 figure
Temperature perturbation model of the opto-galvanic effect in CO2-laser discharges
A detailed discharge model of the opto-galvanic effect in molecular laser gas mixtures is developed based on the temperature perturbation or discharge cooling mechanism of Smith and Brooks (1979). Excellent agreement between the model and experimental results in CO2 laser gas mixtures is obtained. The model should be applicable to other molecular systems where the OGE is being used for laser stabilisation and as a spectroscopic tool
- …