129 research outputs found

    An improved microtiter plate assay to monitor the oxidative burst in monocot and dicot plant cell suspension cultures

    Full text link
    BACKGROUND: A screening method for elicitor and priming agents does not only allow detecting new bioactive substances, it can also be used to understand structure–function relationships of known agents by testing different derivatives of them. This can not only provide new lead compounds for the development of novel, more environment-benign, bio-based agro-chemicals, it may eventually also lead to a better understanding of defense mechanisms in plants. Reactive oxygen species (ROS) are sensitive indicators of these mechanisms but current assay formats are not suitable for multiplex screening, in particularly not in the case of monocot systems. RESULTS: Here we describe continuous monitoring of ROS in 96-well microtiter plates using the chemiluminescent probe L012, a luminol derivative producing chemiluminescence when oxidised by ROS like hydrogen peroxide, superoxide, or hydroxyl radical that can thus be used as an indicator for these ROS. We were able to measure ROS in both monocot (Oryza sativa) and dicot (Medicago truncatula) cell suspension cultures and record dose dependencies for the carbohydrate elicitors and priming agents ulvan and chitosan at low substrate concentrations (0.3–2.5 µg/ml). The method was optimized in terms of cell density, L012 concentration, and pre-incubation time. In contrast to the single peak observed using a cuvette luminometer, the improved method revealed a double burst in both cell systems during the 90-min measuring period, probably due to the detection of multiple ROS rather than only H2O2. CONCLUSION: We provide a medium throughput screening method for monocot and dicot suspension-cultured cells that enables direct comparison of monocot and dicot plant systems regarding their reaction to different signaling molecules.<br

    Inverse relationship between chitobiase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses

    Get PDF
    Serratia proteamaculans chitinase-D (SpChiD) has a unique combination of hydrolytic and transglycosylation (TG) activities. The TG activity of SpChiD can be used for large-scale production of chito-oligosaccharides (CHOS). The multiple activities (hydrolytic and/or chitobiase activities and TG) of SpChiD appear to be strongly influenced by the substrate-binding cleft. Here, we report the unique property of SpChiD substrate-binding cleft, wherein, the residues Tyr28, Val35 and Thr36 control chitobiase activity and the residues Trp160 and Trp290 are crucial for TG activity. Mutants with reduced (V35G and T36G/F) or no (SpChiD&#916;30–42 and Y28A) chitobiase activity produced higher amounts of the quantifiable even-chain TG product with degree of polymerization (DP)-6, indicating that the chitobiase and TG activities are inversely related. In addition to its unprecedented catalytic properties, unlike other chitinases, the single modular SpChiD showed dual unfolding transitions. Ligand-induced thermal stability studies with the catalytically inactive mutant of SpChiD (E153A) showed that the transition temperature increased upon binding of CHOS with DP2–6. Isothermal titration calorimetry experiments revealed the exceptionally high binding affinities for E153A to CHOS with DP2–6. These observations strongly support that the architecture of SpChiD substrate-binding cleft adopted to control chitobiase and TG activities, in addition to usual chitinase-mediated hydrolysis

    Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    Full text link
    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture

    Customized chitooligosaccharide production—controlling their length via engineering of rhizobial chitin synthases and the choice of expression system

    Get PDF
    Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms—Escherichia coli and Corynebacterium glutamicum—to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS’ bioactivities, and subsequently enable sustainable large-scale production of oligomers

    Corynebacterium glutamicum possesses β-N-acetylglucosaminidase

    Get PDF
    Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology. 2016;16(1): 177.Background In Gram-positive Corynebacterium glutamicum and other members of the suborder Corynebacterianeae, which includes mycobacteria, cell elongation and peptidoglycan biosynthesis is mainly due to polar growth. C. glutamicum lacks an uptake system for the peptidoglycan constituent N-acetylglucosamine (GlcNAc), but is able to catabolize GlcNAc-6-phosphate. Due to its importance in white biotechnology and in order to ensure more sustainable processes based on non-food renewables and to reduce feedstock costs, C. glutamicum strains have previously been engineered to produce amino acids from GlcNAc. GlcNAc also is a constituent of chitin, but it is unknown if C. glutamicum possesses chitinolytic enzymes. Results Chitin was shown here not to be growth substrate for C. glutamicum. However, its genome encodes a putative N-acetylglucosaminidase. The nagA 2 gene product was active as β-N-acetylglucosaminidase with 0.27 mM 4-nitrophenyl N,N’-diacetyl-β-D-chitobioside as substrate supporting half-maximal activity. NagA2 was secreted into the culture medium when overproduced with TAT and Sec dependent signal peptides, while it remained cytoplasmic when overproduced without signal peptide. Heterologous expression of exochitinase gene chiB from Serratia marcescens resulted in chitinolytic activity and ChiB secretion was enhanced when a signal peptide from C. glutamicum was used. Colloidal chitin did not support growth of a strain secreting exochitinase ChiB and β-N-acetylglucosaminidase NagA2. Conclusions C. glutamicum possesses β-N-acetylglucosaminidase. In the wild type, β-N-acetylglucosaminidase activity was too low to be detected. However, overproduction of the enzyme fused to TAT or Sec signal peptides led to secretion of active β-N-acetylglucosaminidase. The finding that concomitant secretion of endogenous NagA2 and exochitinase ChiB from S. marcescens did not entail growth with colloidal chitin as sole or combined carbon source, may indicate the requirement for higher or additional enzyme activities such as processive chitinase or endochitinase activities

    Structural aspects of defense

    No full text
    Plants can defend themselves very efficiently against phytopathogens. This resistance can be based on preformed resistance factors or it may be the result of infection-induced resistance reactions. Preformed and induced resistance mechanisms can be structural or chemical in nature. Clearly, the resistance of many plants to attack by potentially pathogenic micro-organisms is due to preformed structural properties such as an inappropriate surface hydrophobicity or topography which fails to supply the signals required for microbial ingress in addition to cell walls resilient to physical and chemical attack. Should a micro-organism overcome these preformed barriers, plants will almost invariably fall back on their second line of defense, i.e., active resistance reactions will be induced. Again, these may have structural aspects, such as local cell wall thickening and reinforcement, encapsulation of the penetrating pathogen in dead and often lignified or suberized cells, and even the formation of new meristems forming new layers of cells around the site of attempted microbial ingress. In this chapter, we will learn how plant cells build a strong cell wall as a protection against phytopathogens, and we will get to know the strategies that micro-organisms have adopted to circumvent or breach these cell walls. Finally, we shall explore the many ways plants have evolved to counteract microbial attacks - including preformed structural resistance factors and infection-induced structural resistance reactions. We will close the chapter with a discussion of the ways open to plant pathologists to unravel cause/consequence-relationships between plant defense mechanisms and disease
    • …
    corecore