8 research outputs found

    Integrative Bioinformatics Analysis of Proteins Associated with the Cardiorenal Syndrome

    Get PDF
    The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular disease, where cardiovascular events are the most common cause of death in patients with chronic kidney disease. Both, cardiovascular as well as kidney diseases have been extensively analyzed on a molecular level, resulting in molecular features and associated processes indicating a cross-talk of the two disease etiologies on a pathophysiological level. In order to gain a comprehensive picture of molecular factors contributing to the bidirectional interplay between kidney and cardiovascular system, we mined the scientific literature for molecular features reported as associated with the cardiorenal syndrome, resulting in 280 unique genes/proteins. These features were then analyzed on the level of molecular processes and pathways utilizing various types of protein interaction networks. Next to well established molecular features associated with the renin-angiotensin system numerous proteins involved in signal transduction and cell communication were found, involving specific molecular functions covering receptor binding with natriuretic peptide receptor and ligands as well known example. An integrated analysis of identified features pinpointed a protein interaction network involving mediators of hemodynamic change and an accumulation of features associated with the endothelin and VEGF signaling pathway. Some of these features may function as novel therapeutic targets

    Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress

    Get PDF
    International audience; High content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the nephrotoxin Cyclosporine A (CsA) at therapeutic and supratherapeutic concentrations for 14 days. CsA was quantified in supernatants and cellular lysates by LC-MS/MS for kinetic modeling. There was a rapid cellular uptake and accumulation of CsA, with a non-linear relationship between intracellular and applied concentrations. CsA at 15 µM induced mitochondrial disturbances and activation of the Nrf2-oxidative-damage and the unfolded protein-response pathways. All three omic streams provided complementary information, especially pertaining to Nrf2 and ATF4 activation. No stress induction was detected with 5 µM CsA; however, both concentrations resulted in a maximal secretion of cyclophilin B. The study demonstrates for the first time that CsA-induced stress is not directly linked to its primary pharmacology. In addition we demonstrate the power of integrated omics for the elucidation of signaling cascades brought about by compound induced cell stress

    Access to

    No full text
    The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular disease, where cardiovascular events are the most common cause of death in patients with chronic kidney disease. Both, cardiovascular as well as kidney diseases have been extensively analyzed on a molecular level, resulting in molecular features and associated processes indicating a cross-talk of the two disease etiologies on a pathophysiological level. In order to gain a comprehensive picture of molecular factors contributing to the bidirectional interplay between kidney and cardiovascular system, we mined the scientific literature for molecular features reported as associated with the cardiorenal syndrome, resulting in 280 unique genes/proteins. These features were then analyzed on the level of molecular processes and pathways utilizing various types of protein interaction networks. Next to well established molecular features associated with the renin-angiotensin system numerous proteins involved in signal transduction and cell communication were found, involving specific molecular functions covering receptor binding with natriuretic peptide receptor and ligands as well known example. An integrated analysis of identified features pinpointed a protein interaction network involving mediators of hemodynamic change and an accumulation of features associated with the endothelin and VEGF signaling pathway. Some of these features may function as novel therapeutic targets

    Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing

    No full text
    There is a growing impetus to develop more accurate, predictive and relevant in vitro models of renal xenobiotic exposure. As part of the EU-FP7, Predict-IV project, a major aim was to develop models that recapitulate not only normal tissue physiology but also aspects of disease conditions that exist as predisposing risk factors for xenobiotic toxicity. Hypoxia, as a common micro-environmental alteration associated with pathophysiology in renal disease, was investigated for its effect on the toxicity profile of a panel of 14 nephrotoxins, using the human proximal tubular epithelial RPTECT/TERT1 cell line. Changes in ATP, glutathione and resazurin reduction, after 14 days of daily repeat exposure, revealed a number of compounds, including adefovir dipivoxil with enhanced toxicity in hypoxia. We observed intracellular accumulation of adefovir in hypoxia and suggest decreases in the efflux transport proteins MRP4, MRP5, NHERF1 and NHERF3 as a possible explanation. MRP5 and NHERF3 were also down-regulated upon treatment with the HIF-1 activator, dimethyloxalylglycine. Interestingly, adefovir dependent gene expression shifted from alterations in cell cycle gene expression to an inflammatory response in hypoxia. The ability to investigate aspects of disease states and their influence on renal toxin handling is a key advantage of in vitro systems developed here. They also allow for detailed investigations into mechanisms of compound toxicity of potential importance for compromised tissue exposure

    Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress.

    No full text
    High content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the characterized nephrotoxin Cyclosporine A (CsA) at therapeutic and supra therapeutic concentrations for 14 days. CsA was quantified in supernatants and cellular lysates by LC-MS/MS for kinetic modeling. There was a rapid cellular uptake and accumulation of CsA, with a non-linear relationship between intracellular and applied concentrations. CsA at 15 µM induced mitochondrial disturbances and activation of the Nrf2-oxidative-damage and the unfolded protein- response pathways. All three omic streams provided complementary information, especially pertaining to Nrf2 and ATF4 activation. No stress induction was detected with 5 µM CsA; however, both concentrations resulted in a maximal secretion of cyclophilin B. The study demonstrates for the first time that CsA-induced stress is not directly linked to its primary pharmacology. In addition we demonstrate the power of integrated omics for the elucidation of signaling cascades brought about by compound induced cell stress.JRC.I.1-Chemical Assessment and Testin
    corecore