5,206 research outputs found

    Effects of a Volatile Organic Compound Filter on Breath Profiles Measured by Secondary Electrospray High-Resolution Mass Spectrometry

    Full text link
    Environmental volatile organic compounds (VOCs) from the ambient air potentially influence on-line breath analysis measurements by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). The aim of this study was to investigate how inhaling through a VOC filter affects the detected breath profiles and whether it is feasible to integrate such filters into routine measurements. A total of 24 adult participants performed paired breath analysis measurements with and without the use of an activated carbon filter for inspiration. Concordance correlation coefficients (CCCs) and the Bland-Altman analysis were used to assess the agreement between the two methods. Additionally, the effect on a selection of known metabolites and contaminants was analyzed. Out of all the detected features, 78.3% showed at least a moderate agreement before and after filter usage (CCC > 0.9). The decrease in agreement of the remaining m/z features was mostly associated with reduced signal intensities after filter usage. Although a moderate-to-substantial concordance was found for almost 80% of the m/z features, the filter still had an effect by decreasing signal intensities, not only for contaminants, but also for some of the studied metabolites. Operationally, the use of the filter complicated and slowed down the conductance of measurements, limiting its applicability in clinical studies

    Effects of Upper-Limb Exoskeletons Designed for Use in the Working Environment : A Literature Review

    Get PDF
    Introduction: Many employees report high physical strain from overhead work and resulting musculoskeletal disorders. The consequences of these conditions extend far beyond everyday working life and can severely limit the quality of life of those affected. One solution to this problem may be the use of upper-limb exoskeletons, which are supposed to relieve the shoulder joint in particular. The aim of this literature review was to provide an overview of the use and efficacy of exoskeletons for upper extremities in the working environment. Methods: A literature review was conducted using the PICO scheme and the PRISMA statement. To this end, a systematic search was performed in the PubMed, Web of Science and Scopus databases in May 2020 and updated in February 2022. The obtained studies were screened using previously defined inclusion and exclusion criteria and assessed for quality. Pertinent data were then extracted from the publications and analyzed with regard to type of exoskeleton used as well as efficacy of exoskeleton use. Results: 35 suitable studies were included in the review. 18 different exoskeletons were examined. The majority of the exoskeletons only supported the shoulder joint and were used to assist individuals working at or above shoulder level. The main focus of the studies was the reduction of muscle activity in the shoulder area. Indeed, 16 studies showed a reduced activity in the deltoid and trapezius muscles after exoskeleton use. Kinematically, a deviation of the movement behavior could be determined in some models. In addition, study participants reported perceived reduction in exertion and discomfort. Discussion: Exoskeletons for upper extremities may generate significant relief for the intended tasks, but the effects in the field (i.e., working environment) are less pronounced than in the laboratory setting. This may be due to the fact that not only overhead tasks but also secondary tasks have to be performed in the field. In addition, currently available exoskeletons do not seem to be suitable for all overhead workplaces and should always be assessed in the human-workplace context. Further studies in various settings are required that should also include more females and older people

    Improving Deep Learning for HAR with shallow LSTMs

    Full text link
    Recent studies in Human Activity Recognition (HAR) have shown that Deep Learning methods are able to outperform classical Machine Learning algorithms. One popular Deep Learning architecture in HAR is the DeepConvLSTM. In this paper we propose to alter the DeepConvLSTM architecture to employ a 1-layered instead of a 2-layered LSTM. We validate our architecture change on 5 publicly available HAR datasets by comparing the predictive performance with and without the change employing varying hidden units within the LSTM layer(s). Results show that across all datasets, our architecture consistently improves on the original one: Recognition performance increases up to 11.7% for the F1-score, and our architecture significantly decreases the amount of learnable parameters. This improvement over DeepConvLSTM decreases training time by as much as 48%. Our results stand in contrast to the belief that one needs at least a 2-layered LSTM when dealing with sequential data. Based on our results we argue that said claim might not be applicable to sensor-based HAR.Comment: 6 pages, 2 figures, accepted at ISWC 21: International Symposium on Wearable Computer, Sept, 202

    Identification of Exhaled Metabolites in Children with Cystic Fibrosis

    Full text link
    The early detection of inflammation and infection is important to prevent irreversible lung damage in cystic fibrosis. Novel and non-invasive monitoring tools would be of high benefit for the quality of life of patients. Our group previously detected over 100 exhaled mass-to-charge (m/z) features, using on-line secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), which distinguish children with cystic fibrosis from healthy controls. The aim of this study was to annotate as many m/z features as possible with putative chemical structures. Compound identification was performed by applying a rigorous workflow, which included the analysis of on-line MS2 spectra and a literature comparison. A total of 49 discriminatory exhaled compounds were putatively identified. A group of compounds including glycolic acid, glyceric acid and xanthine were elevated in the cystic fibrosis group. A large group of acylcarnitines and aldehydes were found to be decreased in cystic fibrosis. The proposed compound identification workflow was used to identify signatures of volatile organic compounds that discriminate children with cystic fibrosis from healthy controls, which is the first step for future non-invasive and personalized applications. Keywords: SESI-HRMS; breath analysis; children; cystic fibrosis; infection; inflammation; putative compound identificatio

    Reading the Mind in the Eyes of Children Test (RME-C-T): Development and Validation of a Complex Emotion Recognition Test

    Get PDF
    Much research has been devoted to the development of emotion recognition tests that can be used to investigate how individuals identify and discriminate emotional expressions of other individuals. One of the most prominent emotion recognition tests is the Reading the Mind in the Eyes Test (RME-T). The original RME-T has been widely used to investigate how individuals recognize complex emotional expressions from the eye region of adult faces. However, the RME-T can only be used to investigate inter-individual differences in complex emotion recognition during the processing of adult faces. To extend its usefulness, we developed a modified version of the RME-T, the Reading the Mind in the Eyes of Children Test (RME-C-T). The RME-C-T can be used to investigate how individuals recognize complex emotional expressions from the eye region of child faces. However, the validity of the RME-C-T has not been evaluated yet. We, thus, administered the RME-C-T together with the RME-T to a sample of healthy adult participants (n = 119). The Interpersonal Reactivity Index (IRI) and the Toronto Alexithymia Scale (TAS) were also administered. Participants’ RME-C-T performance correlated with participants’ RME-T performance, implying that the RME-C-T measures similar emotion recognition abilities as the RME-T. Participants’ RME-C-T performance also correlated with participants’ IRI and TAS scores, indicating that these emotion recognition abilities are affected by empathetic and alexithymic traits. Moreover, participants’ RME-C-T performance differed between participants with high and low TAS scores, suggesting that the RME-C-T is sensitive enough to detect impairments in these emotion recognition abilities. The RME-C-T, thus, turned out to be a valid measure of inter-individual differences in complex emotion recognition during the processing of child faces

    Superposition of ferromagnetic and antiferromagnetic spin chains in the quantum magnet BaAg2Cu[VO4]2

    Full text link
    Based on density functional theory band structure calculations, quantum Monte-Carlo simulations, and high-field magnetization measurements, we address the microscopic magnetic model of BaAg2Cu[VO4]2 that was recently proposed as a spin-1/2 anisotropic triangular lattice system. We show that the actual physics of this compound is determined by a peculiar superposition of ferromagnetic and antiferromagnetic uniform spin chains with nearest-neighbor exchange couplings of Ja(1) ~ -19 K and Ja(2) ~ 9.5 K, respectively. The two chains featuring different types of the magnetic exchange perfectly mimic the specific heat of a triangular spin lattice, while leaving a clear imprint on the magnetization curve that is incompatible with the triangular-lattice model. Both ferromagnetic and antiferromagnetic spin chains run along the crystallographic 'a' direction, and slightly differ in the mutual arrangement of the magnetic CuO4 plaquettes and non-magnetic VO4 tetrahedra. These subtle structural details are, therefore, crucial for the ferromagnetic or antiferromagnetic nature of the exchange couplings, and put forward the importance of comprehensive microscopic modeling for a proper understanding of quantum spin systems in transition-metal compounds.Comment: 9 pages, 9 figures, 2 tables (published version, few citations added

    Sex-Specific Relationships Between Interoceptive Accuracy and Emotion Regulation

    Get PDF
    Over the last years, there has been a resurge in the interest to study the relationship between interoception and emotion. By now, it is well established that interoception contributes to the experience of emotions. However, it may also be possible that interoception contributes to the regulation of emotions. To test this possibility, we studied the relationship between interoception and emotion regulation in a sample of healthy individuals (n = 84). We used a similar heartbeat detection task and a similar self-report questionnaire for the assessment of interoceptive accuracy and emotion regulation as in previous studies. In contrast to previous studies, we differentiated between male and female individuals in our analyses and controlled our analyses for individual characteristics that may affect the relationship between interoceptive accuracy and emotion regulation. We found sex-differences in interoceptive accuracy and emotion regulation that amounted to a sex-specific relationship between interoceptive accuracy and emotion regulation: Whereas interoceptive accuracy was related to reappraisal but not to suppression in male individuals, interoceptive accuracy was unrelated to reappraisal and suppression in female individuals. These findings indicate that the relationship between interoception and emotion regulation is far more complex than has been suggested by previous findings. However, these findings nonetheless support the view that interoception is essential for both, the regulation and experience of emotions

    A gas-phase standard delivery system for direct breath analysis

    Full text link
    Applications for direct breath analysis by mass spectrometry (MS) are rapidly expanding. One of the more recent mass spectrometry-based approaches is secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). Despite increasing usage, the SESI methodology still lacks standardization procedures for quality control and absolute quantification. In this study, we designed and evaluated a custom-built standard delivery system tailored for direct breath analysis. The system enables the simultaneous introduction of multiple gas-phase standard compounds into ambient MS setups in the lower parts-per-million (ppm) to parts-per-billion (ppb) range. To best mimic exhaled breath, the gas flow can be heated (37 °C–40 °C) and humidified (up to 98% relative humidity). Inter-laboratory comparison of the system included various SESI-HRMS setups, i.e. an Orbitrap and a quadrupole time-of-flight mass spectrometer (QTOF), and using both single- as well as multi-component standards. This revealed highly stable and reproducible performances with between-run variation 95%) for the single-compound standard acetone, while compound-specific performances were obtained for the multi-component standard. Similarly, the sensitivity varied for different compounds within the multi-component standard across all SESI-Orbitrap and -QTOF setups, yielding limits of detections from 3.1 ppb (for p-xylene) to 0.05 ppb (for 1,8-cineol). Routinely applying the standard system throughout several weeks, allowed us to monitor instrument stability and to identify technical outliers in exhaled breath measurements. Such routine deployment of standards would significantly improve data quality and comparability, which is especially important in longitudinal and multi-center studies. Furthermore, performance validation of the system demonstrated its suitability for reliable absolute quantification while it illustrated compound-dependent behavior for SESI
    • …
    corecore