89 research outputs found

    ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    Get PDF
    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is \sim\,3939^{\circ}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.Comment: 10 pages, 9 figures, Accepted for publication in the Ap

    A Precise Distance to IRAS 00420+5530 via H2O Maser Parallax with the VLBA

    Full text link
    We have used the VLBA to measure the annual parallax of the H2O masers in the star-forming region IRAS 00420+5530. This measurement yields a direct distance estimate of 2.17 +/- 0.05 kpc (<3%), which disagrees substantially with the standard kinematic distance estimate of ~4.6 kpc (according to the rotation curve of Brand and Blitz 1993), as well as most of the broad range of distances (1.7-7.7 kpc) used in various astrophysical analyses in the literature. The 3-dimensional space velocity of IRAS 00420+5530 at this new, more accurate distance implies a substantial non-circular and anomalously slow Galactic orbit, consistent with similar observations of W3(OH) (Xu et al., 2006; Hachisuka et al. 2006), as well as line-of-sight velocity residuals in the rotation curve analysis of Brand and Blitz (1993). The Perseus spiral arm of the Galaxy is thus more than a factor of two closer than previously presumed, and exhibits motions substantially at odds with axisymmetric models of the rotating Galaxy.Comment: 33 pages, 12 figures; Accepted by ApJ (to appear March 2009

    Trigonometric Parallaxes of Massive Star Forming Regions: VI. Galactic Structure, Fundamental Parameters and Non-Circular Motions

    Full text link
    We are using the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 +/- 3 degrees, which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete 3-dimensional kinematic information. We find that star forming regions on average are orbiting the Galaxy ~15 km/s slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R_o = 8.4 +/- 0.6 kpc and a circular rotation speed Theta_o = 254 +/- 16 km/s. The ratio Theta_o/R_o can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 +/- 0.9 km/s/kpc, in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than two; they can be brought into better agreement with the trigonometric parallaxes by increasing Theta_o/R_o from the IAU recommended value of 25.9 km/s/kpc to a value near 30 km/s/kpc. We offer a "revised" prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of Theta_o and To/R_o, when coupled with direct estimates of R_o, provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two dominant Local Group galaxy are comparably massive.Comment: 35 pages, 7 figures, 7 table

    Trigonometric Parallax of W51 Main/South

    Full text link
    We report measurement of the trigonometric parallax of W51 Main/South using the Very Long Baseline Array (VLBA). We measure a value of 0.185 +/- 0.010 mas, corresponding to a distance of 5.41 (+0.31/-0.28) kpc. W51 Main/South is a well-known massive star-forming region near the tangent point of the Sagittarius spiral arm of the Milky Way. Our distance to W51 yields an estimate of the distance to the Galactic center of Ro = 8.3 +/- 0.46 (statistical) +/- 1.0 (systematic) kpc by simple geometry. Combining the parallax and proper motion measurements for W51, we obtained the full-space motion of this massive star forming region. We find W51 is in a nearly circular orbit about the Galactic center. The H2O masers used for our parallax measurements trace four powerful bipolar outflows within a 0.4 pc size region, some of which are associated with dusty molecular hot cores and/or hyper- or ultra-compact HII regions.Comment: Accepted to ApJ; 32 pages; 6 tables; 5 figure

    MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets

    Get PDF
    We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)Comment: 19 pages, 10 figures, 2 tables, accepted by the Astronomical Journal; online only material is available from http://www.cv.nrao.edu/2cmVLBA/pub/MOJAVE_VI_suppl.zi

    The Bar and Spiral Structure Legacy (BeSSeL) Survey: Mapping the Milky Way with VLBI Astrometry

    Full text link
    Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our Galaxy and to determine fundamental parameters such as the rotation velocity (Θ0\Theta_0) and curve and the distance to the Galactic center (R0_0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0_0 and Θ0\Theta_0 need a substantial revision. In particular the combination of 8.5 kpc and 220 \kms\, can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr\,A* gives best values of R0_0 = 8.3 ±\pm 0.23 kpc and Θ0\Theta_0 = 239 or 246 ±\pm 7 \kms, for Solar motions of V_ \odot = 12.23 and 5.25 \kms, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) Survey.Comment: 6 pages, 3 figures. 'Highlight talk' held at the Meeting of the Astronomische Gesellschaft (2010). To be published in Reviews in Modern Astronomy, Volume 2
    corecore