3,218 research outputs found
The binary fraction of planetary nebula central stars I. A high-precision, I-band excess search
In an attempt to determine how many planetary nebulae derive from binary
interactions, we have started a project to measure their unbiased binary
fraction. This number, when compared to the binary fraction of the presumed
parent population can give a first handle on the origin of planetary nebulae.
By detecting 27 bona fide central stars in the I band we have found that 30% of
our sample have an I band excess between one and a few sigmas, possibly
denoting companions brighter than M3-4V and with separations smaller than
approximately 1000 AU. By accounting for the undetectable companions, we
determine a de-biased binary fraction of 67-78% for all companions at all
separations. We compare this number to a main sequence binary fraction of
(50+/-4)% determined for spectral types F6V-G2V, appropriate if the progenitors
of today's PN central star population is indeed the F6V-G2V stars. The error on
our estimate could be between 10 and 30%. We conclude that the central star
binary fraction may be larger than expected from the putative parent
population. Using the more sensitive J band of a subset of 11 central stars,
the binary fraction is 54% for companions brighter than approximately M5-6V and
with separations smaller than about 900 AU. De-biassing this number we obtain a
binary fraction of 100-107%. The two numbers should be the same and the
discrepancy is likely due to small number statistics.
We also present an accurately vetted compilation of observed main sequence
star magnitudes, colours and masses, which can serve as a reference for future
studies. We also present synthetic colours of hot stars as a function of
temperature (20-170kK) and gravity (log g= 6-8) for Solar and PG1159
compositions.Comment: 22 pages, 6 figures, 12 tables, accepted by MNRA
Technology requirements for post-1985 communications satellites
The technical and functional requirements for commercial communication satellites are discussed. The need for providing quality service at an acceptable cost is emphasized. Specialized services are postulated in a needs model which forecasts future demands. This needs model is based upon 322 separately identified needs for long distance communication. It is shown that the 1985 demand for satellite communication service for a domestic region such as the United States, and surrounding sea and air lanes, may require on the order of 100,000 MHz of bandwith. This level of demand can be met by means of the presently allocated bandwidths and developing some key technologies. Suggested improvements include: (1) improving antennas so that high speed switching will be possible; (2) development of solid state transponders for 12 GHz and possibly higher frequencies; (3) development of switched or steered beam antennas with 10 db or higher gain for aircraft; and (4) continued development of improved video channel compression techniques and hardware
Technology requirements for communication satellites in the 1980's
The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era
Resolved Kinematics of Runaway and Field OB Stars in the Small Magellanic Cloud
We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small
Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data
reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar
of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5
+/- 5.0 km/s. This unambiguously demonstrates that these two regions are
kinematically distinct: the Wing is moving away from the Bar, and towards the
Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is
consistent with models for a recent, direct collision between the Clouds. We
present transverse velocity distributions for our field OB stars, confirming
that unbound runaways comprise on the order of half our sample, possibly more.
Using eclipsing binaries and double-lined spectroscopic binaries as tracers of
dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers
of runaways accelerated by supernova kicks, we find significant contributions
from both populations. The data suggest that HMXBs have lower velocity
dispersion relative to dynamically ejected binaries, consistent with the former
corresponding to less energetic supernova kicks that failed to unbind the
components. Evidence suggests that our fast runaways are dominated by
dynamical, rather than supernova, ejections.Comment: Accepted to ApJ Letters. 10 pages, 4 figure
Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay
Using the renormalized quasiparticle random phase approximation (RQRPA), we
calculate the light neutrino mass mediated mode of neutrinoless double beta
decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple
quasiboson approximation is not good enough to study the neutrinoless double
beta decay, because its solutions collapse for physical values of g_pp. We find
that extension of the Hilbert space and inclusion of the Pauli Principle in the
QRPA with proton-neutron pairing, allows us to extend our calculations beyond
the point of collapse, for physical values of the nuclear force strength. As a
consequence one might be able to extract more accurate values on the effective
neutrino mass by using the best available experimental limits on the half-life
of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
We have investigated the role of proton-neutron pairing in the context of the
Quasiparticle Random Phase approximation formalism. This way the neutrinoless
double beta decay matrix elements of the experimentally interesting A= 48, 76,
82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found
that the inclusion of proton-neutron pairing influences the neutrinoless double
beta decay rates significantly, in all cases allowing for larger values of the
expectation value of light neutrino masses. Using the best presently available
experimental limits on the half life-time of neutrinoless double beta decay we
have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page
Face-to-face: Social work and evil
The concept of evil continues to feature in public discourses and has been reinvigorated in some academic disciplines and caring professions. This article navigates social workers through the controversy surrounding evil so that they are better equipped to acknowledge, reframe or repudiate attributions of evil in respect of themselves, their service users or the societal contexts impinging upon both. A tour of the landscape of evil brings us face-to-face with moral, administrative, societal and metaphysical evils, although it terminates in an exhortation to cultivate a more metaphorical language. The implications for social work ethics, practice and education are also discussed
Small Molecule Inhibitor of Tau Self-Association in a Mouse Model of Tauopathy: A Preventive Study in P301L Tau JNPL3 Mice
Advances in tau biology and the difficulties of amyloid-directed immunotherapeutics have heightened interest in tau as a target for small molecule drug discovery for neurodegenerative diseases. Here, we evaluated OLX-07010, a small molecule inhibitor of tau self-association, for the prevention of tau aggregation. The primary endpoint of the study was statistically significant reduction of insoluble tau aggregates in treated JNPL3 mice compared with Vehicle-control mice. Secondary endpoints were dose-dependent reduction of insoluble tau aggregates, reduction of phosphorylated tau, and reduction of soluble tau. This study was performed in JNPL3 mice, which are representative of inherited forms of 4-repeat tauopathies with the P301L tau mutation (e.g., progressive supranuclear palsy and frontotemporal dementia). The P301L mutation makes tau prone to aggregation; therefore, JNPL3 mice present a more challenging target than mouse models of human tau without mutations. JNPL3 mice were treated from 3 to 7 months of age with Vehicle, 30 mg/kg compound dose, or 40 mg/kg compound dose. Biochemical methods were used to evaluate self-associated tau, insoluble tau aggregates, total tau, and phosphorylated tau in the hindbrain, cortex, and hippocampus. The Vehicle group had higher levels of insoluble tau in the hindbrain than the Baseline group; treatment with 40 mg/kg compound dose prevented this increase. In the cortex, the levels of insoluble tau were similar in the Baseline and Vehicle groups, indicating that the pathological phenotype of these mice was beginning to emerge at the study endpoint and that there was a delay in the development of the phenotype of the model as originally characterized. No drug-related adverse effects were observed during the 4-month treatment period
A Qualitative Study of Anticipated Decision Making around Type 2 Diabetes Genetic Testing: the Role of Scientifically Concordant and Discordant Expectations
Type 2 diabetes mellitus (T2DM) genetic testing is undergoing clinical trials to measure the efficacy of genetic counseling for behavior‐based risk reduction. The expectations patients bring to the testing process may play an important role in individual outcomes. We conducted a qualitative exploration of anticipated decision‐making and expectations around T2DM genetic testing. Semi‐structured interviews were completed with Mexican Americans (n = 34), non‐Hispanic Black Americans (n = 39), and non‐Hispanic White Americans (n = 39) at risk for T2DM. Transcripts were analyzed for themes. Most participants would accept T2DM genetic testing in order to motivate risk‐reducing behaviors or apprise family members of their risk. Participants who would decline testing wished to avoid emotional distress or believed the test would not reveal new risk information. Non‐Hispanic Whites and those with college education declined genetic testing more often than other groups. Those without college education were more likely to have testing expectations that were discordant with current science, such as conflating genetic testing with common ‘blood tests.’ Understanding expectations and decision‐making factors around T2DM genetic testing will better prepare healthcare professionals to counsel their patients. This may lead to a higher efficacy of T2DM genetic testing and counseling.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147076/1/jgc40469.pd
A New Class of Majoron-Emitting Double-Beta Decays
Motivated by the excess events that have recently been found near the
endpoints of the double beta decay spectra of several elements, we re-examine
models in which double beta decay can proceed through the neutrinoless emission
of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to
date for this process must fine-tune either a scalar mass or a VEV to be less
than 10 keV, we introduce a new kind of majoron which avoids this difficulty by
carrying lepton number . We analyze in detail the requirements that
models of both the conventional and our new type must satisfy if they are to
account for the observed excess events. We find: (1) the electron sum-energy
spectrum can be used to distinguish the two classes of models from one another;
(2) the decay rate for the new models depends on different nuclear matrix
elements than for ordinary majorons; and (3) all models require a (pseudo)
Dirac neutrino, having a mass of a several hundred MeV, which mixes with
.Comment: 43 pages, 10 figures (included), [figure captions are now included
- …