In an attempt to determine how many planetary nebulae derive from binary
interactions, we have started a project to measure their unbiased binary
fraction. This number, when compared to the binary fraction of the presumed
parent population can give a first handle on the origin of planetary nebulae.
By detecting 27 bona fide central stars in the I band we have found that 30% of
our sample have an I band excess between one and a few sigmas, possibly
denoting companions brighter than M3-4V and with separations smaller than
approximately 1000 AU. By accounting for the undetectable companions, we
determine a de-biased binary fraction of 67-78% for all companions at all
separations. We compare this number to a main sequence binary fraction of
(50+/-4)% determined for spectral types F6V-G2V, appropriate if the progenitors
of today's PN central star population is indeed the F6V-G2V stars. The error on
our estimate could be between 10 and 30%. We conclude that the central star
binary fraction may be larger than expected from the putative parent
population. Using the more sensitive J band of a subset of 11 central stars,
the binary fraction is 54% for companions brighter than approximately M5-6V and
with separations smaller than about 900 AU. De-biassing this number we obtain a
binary fraction of 100-107%. The two numbers should be the same and the
discrepancy is likely due to small number statistics.
We also present an accurately vetted compilation of observed main sequence
star magnitudes, colours and masses, which can serve as a reference for future
studies. We also present synthetic colours of hot stars as a function of
temperature (20-170kK) and gravity (log g= 6-8) for Solar and PG1159
compositions.Comment: 22 pages, 6 figures, 12 tables, accepted by MNRA