103 research outputs found
Immunoaffinity isolation of Na,K-ATPase α3 isoform from pig kidney
AbstractThe Na,K-ATPase α3 isoform of the catalytic subunit has been isolated from pig kidney microsomes. The procedure employs immunoaffinity chromatography on Sepharose 4B covalently coupled with monospecific antibodies a-II against the synthetic peptide including the putative α3 N-terminus. The structural analysis provides unambiguous proof that the isolated protein corresponds to the third transcript for the α3 isoform. The N-terminal amino acid sequence determined, Met-Gly-Asp-Lys-Lys-Asp-Asp, shows that unlike the α1 and α2 proteins, the mature Na,K-ATPase α3 isoform lacks post-translational proteolytic processing.ATPase isozyme, (Na+ + K+)-; Immunoaffinity chromatography; N-terminal sequence analysi
Binding of monovalent cations induces large changes in the secondary structure of Na+,K+-ATPase as probed by Raman spectroscopy
AbstractRaman spectra of active Na+,K+-ATPase from pig kidney in media containing Na+ (E1), K+ (E2) or without exogenous ions (E1 conformation) were recorded in order to calculate the changes in the enzyme's secondary structure induced by binding of monovalent cations. It is demonstrated that: (i) K+ binding to the E1 form of the enzyme leads to conversion of ~̊100 peptide groups from the β-structure to α-helical conformation; (ii) the transition is reversible and fully reproducible in the E1→E2→E1 and E2→E1→E2 experimental schemes. Predictional calculations revealed polypeptide chain segments involved in the α ↔ β transformations. These segments reside mainly in the two highly conserved regions of the α-subunit in the cytoplasmic domain of Na+,K+-ATPase. A possible role for the β-subunit is discussed
Role of homologous ASP334 and GLU319 in human non-gastric H,K- and Na,K-ATPases in cardiac glycoside binding
Cardiac steroids inhibit Na,K-ATPase and the related non-gastric H,K-ATPase, while they do not interact with gastric H,K-ATPase. Introducing an arginine, the residue present in the gastric H,K-ATPase, in the second extracellular loop at the corresponding position 334 in the human non-gastric H,K-ATPase (D334R mutation) rendered it completely resistant to 2mM ouabain. The corresponding mutation (E319R) in alpha1 Na,K-ATPase produced a approximately 2-fold increase of the ouabain IC(50) in the ouabain-resistant rat alpha1 Na,K-ATPase and a large decrease of the ouabain affinity of human alpha1 Na,K-ATPase, on the other hand this mutation had no effect on the affinity for the aglycone ouabagenin. These results provide a strong support for the orientation of ouabain in its biding site with its sugar moiety interacting directly with the second extracellular loop
Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals
ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na, K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and beta-sarcoglycan. No new interactions were found for chicken BetaM and human Na, K-ATPase beta 1, beta 2 and beta 3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity
Chromosomal localization of the gene coding for α-subunit of Na+,K+-ATPase in the American mink (Mustela vison)
AbstractThe gene coding for the α-subunit of Na+,K+-ATPase has been localized on chromosome 2 of the American mink (Mustela vison) using the somatic cell hybrids mink-Chinese hamster and pig cDNA clones as hybridization probes
Properties of a cryptic lysyl oxidase from haloarchaeon Haloterrigena turkmenica
Background Lysyl oxidases (LOX) have been extensively studied in mammals, whereas properties and functions of recently found homologues in prokaryotic genomes remain enigmatic. Methods LOX open reading frame was cloned from Haloterrigena turkmenica in an E. coli expression vector. Recombinant Haloterrigena turkmenica lysyl oxidase (HTU-LOX) proteins were purified using metal affinity chromatography under denaturing conditions followed by refolding. Amine oxidase activity has been measured fluorometrically as hydrogen peroxide release coupled with the oxidation of 10-acetyl-3,7-dihydroxyphenoxazine in the presence of horseradish peroxidase. Rabbit polyclonal antibodies were obtained and used in western blotting. Results Cultured H. turkmenica has no detectable amine oxidase activity. HTU-LOX may be expressed in E. coli with a high protein yield. The full-length protein gives no catalytic activity. For this reason, we hypothesized that the hydrophobic N-terminal region may interfere with proper folding and its removal may be beneficial. Indeed, truncated His-tagged HTU-LOX lacking the N-terminal hydrophobic signal peptide purified under denaturing conditions can be successfully refolded into an active enzyme, and a larger N-terminal truncation further increases the amine oxidase activity. Refolding is optimal in the presence of Cu2+ at pH 6.2 and is not sensitive to salt. HTU-LOX is sensitive to LOX inhibitor 3-aminopropionitrile. HTU-LOX deaminates usual substrates of mammalian LOX such as lysine-containing polypeptides and polymers. The major difference between HTU-LOX and mammalian LOX is a relaxed substrate specificity of the former. HTU-LOX readily oxidizes various primary amines including such compounds as taurine and glycine, benzylamine being a poor substrate. Of note, HTU-LOX is also active towards several aminoglycoside antibiotics and polymyxin. Western blotting indicates that epitopes for the anti-HTU-LOX polyclonal antibodies coincide with a high molecular weight protein in H. turkmenica cells. Conclusion H. turkmenica contains a lysyl oxidase gene that was heterologously expressed yielding an active recombinant enzyme with important biochemical features conserved between all known LOXes, for example, the sensitivity to 3-aminopropionitrile. However, the native function in the host appears to be cryptic. Significance This is the first report on some properties of a lysyl oxidase from Archaea and an interesting example of evolution of enzymatic properties after hypothetical horizontal transfers between distant taxa
The non-gastric H,K-ATPase is oligomycin-sensitive and can function as an H+,NH4(+)-ATPase.
Contains fulltext :
48560.pdf (Publisher’s version ) (Open Access)We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase
Human nongastric H+-K+-ATPase: transport properties of ATP1al1 assembled with different beta-subunits.
To investigate whether nongastric H+-K+-ATPases transport Na+ in exchange for K+ and whether different beta-isoforms influence their transport properties, we compared the functional properties of the catalytic subunit of human nongastric H+-K+-ATPase, ATP1al1 (AL1), and of the Na+-K+-ATPase alpha1-subunit (alpha1) expressed in Xenopus oocytes, with different beta-subunits. Our results show that betaHK and beta1-NK can produce functional AL1/beta complexes at the oocyte cell surface that, in contrast to alpha1/beta1 NK and alpha1/betaHK complexes, exhibit a similar apparent K+ affinity. Similar to Na+-K+-ATPase, AL1/beta complexes are able to decrease intracellular Na+ concentrations in Na+-loaded oocytes, and their K+ transport depends on intra- and extracellular Na+ concentrations. Finally, controlled trypsinolysis reveals that beta-isoforms influence the protease sensitivity of AL1 and alpha1 and that AL1/beta complexes, similar to the Na+-K+-ATPase, can undergo distinct K+-Na+- and ouabain-dependent conformational changes. These results provide new evidence that the human nongastric H+-K+-ATPase interacts with and transports Na+ in exchange for K+ and that beta-isoforms have a distinct effect on the overall structural integrity of AL1 but influence its transport properties less than those of the Na+-K+-ATPase alpha-subunit
- …