848 research outputs found

    High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression

    Get PDF
    Motivation: The high dimensionality of genomic data calls for the development of specific classification methodologies, especially to prevent over-optimistic predictions. This challenge can be tackled by compression and variable selection, which combined constitute a powerful framework for classification, as well as data visualization and interpretation. However, current proposed combinations lead to instable and non convergent methods due to inappropriate computational frameworks. We hereby propose a stable and convergent approach for classification in high dimensional based on sparse Partial Least Squares (sparse PLS). Results: We start by proposing a new solution for the sparse PLS problem that is based on proximal operators for the case of univariate responses. Then we develop an adaptive version of the sparse PLS for classification, which combines iterative optimization of logistic regression and sparse PLS to ensure convergence and stability. Our results are confirmed on synthetic and experimental data. In particular we show how crucial convergence and stability can be when cross-validation is involved for calibration purposes. Using gene expression data we explore the prediction of breast cancer relapse. We also propose a multicategorial version of our method on the prediction of cell-types based on single-cell expression data. Availability: Our approach is implemented in the plsgenomics R-package.Comment: 9 pages, 3 figures, 4 tables + Supplementary Materials 8 pages, 3 figures, 10 table

    Influence of the solar EUV flux on the Martian plasma environment

    Get PDF
    The interaction of the solar wind with the Martian atmosphere and ionosphere is investigated by using three-dimensional, global and multi-species hybrid simulations. In the present work we focus on the influence of the solar EUV flux on the Martian plasma environment by comparing simulations done for conditions representative of the extrema of the solar cycle. The dynamics of four ionic species (H<sup>+</sup>, He<sup>++</sup>, O<sup>+</sup>, O<sub>2</sub><sup>+</sup>), originating either from the solar wind or from the planetary plasma, is treated fully kinetically in the simulation model in order to characterize the distribution of each component of the plasma, both at solar maximum and at solar minimum. The solar EUV flux controls the ionization frequencies of the exospheric species, atomic hydrogen and oxygen, as well as the density, the temperature, and thus the extension of the exosphere. Ionization by photons and by electron impacts, and the main charge exchange reactions are self-consistently included in the simulation model. Simulation results are in reasonable agreement with the observations made by Phobos-2 and Mars Global Surveyor (MGS) spacecraft: 1) the interaction creates a cavity, void of solar wind ions (H<sup>+</sup>, He<sup>++</sup>), which depends weakly upon the phase of the solar cycle, 2) the motional electric field of the solar wind flow creates strong asymmetries in the Martian environment, 3) the spatial distribution of the different components of the planetary plasma depends strongly upon the phase of the solar cycle. The fluxes of the escaping planetary ions are computed from the simulated data and results for solar maximum are compared with estimates based on the measurements made by experiments ASPERA and TAUS on board Phobos-2

    Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid

    Get PDF
    The highly selective nitrogen donor ligand CyMe4BTBP for An(III) separation by solvent extraction was irradiated in a 60Co γ-source under varying conditions. Organic solutions of 10 mmol/L ligand in 1-octanol were contacted with different concentrations of nitric acid to observe the influence of an aqueous phase during irradiation. In subsequent liquid-liquid extraction experiments, distribution ratios of 241Am and 152Eu were determined. Distribution ratios decreased with increasing absorbed dose when irradiation was performed in the absence of nitric acid. With addition of nitric acid, initial distribution ratios remained constant over the whole examined dose range up to 300 kGy. For qualitative determination of radiolysis products, HPLC-MS measurements were performed. The protective effect of nitric acid was confirmed, since in samples irradiated with acid contact, no degradation products were observed, but only addition products of the 1-octanol molecule to the CyMe4BTBP molecule

    Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid

    Get PDF
    The highly selective nitrogen donor ligand CyMe4BTBP for An(III) separation by solvent extraction was irradiated in a 60Co γ-source under varying conditions. Organic solutions of 10 mmol/L ligand in 1-octanol were contacted with different concentrations of nitric acid to observe the influence of an aqueous phase during irradiation. In subsequent liquid-liquid extraction experiments, distribution ratios of 241Am and 152Eu were determined. Distribution ratios decreased with increasing absorbed dose when irradiation was performed in the absence of nitric acid. With addition of nitric acid, initial distribution ratios remained constant over the whole examined dose range up to 300 kGy. For qualitative determination of radiolysis products, HPLC-MS measurements were performed. The protective effect of nitric acid was confirmed, since in samples irradiated with acid contact, no degradation products were observed, but only addition products of the 1-octanol molecule to the CyMe4BTBP molecule

    Batch flowsheet test for a GANEX-type process: the CHALMEX FS-13 process

    Get PDF
    The Chalmers grouped actinide extraction (CHALMEX) process is focused on the co-separation of actinides from all other elements in spent nuclear fuel solution, with the ultimate purpose of transmuting the actinides into shorter-lived and less radiotoxic elements. Based on solvent extraction equilibrium distribution data of actinides and fission products, a preliminary flowsheet was developed and tested in batch mode. The flowsheet consists of one extraction step with the CHALMEX FS-13 solvent (25\ua0mM CyMe4-BTBP in 30% v/v TBP and 70% v/v FS-13), using hydrophilic masking agents (20\ua0mM bimet and 0.2\ua0M mannitol) in the aqueous phase for the complexation of troublesome fission products. Two nitric acid scrub steps (0.5\ua0M HNO3) were efficient in removing co-extracted acid, all molybdenum and the majority of silver. Two stripping stages (0.5\ua0M glycolic acid at pH 4) were efficient in recovery of the actinides from the organic phase. The need for a solvent clean-up stage for the removal of nickel, cadmium, iron and the remaining silver from the organic phase was demonstrated. Based on the distribution data, it was calculated that a 99.9% recovery of americium is possible using only 3 ideal extraction stages, 3 ideal scrubbing stages and 2 ideal stripping stages

    Batch Tests for Optimisation of Solvent Composition and Process Flexibility of the CHALMEX FS-13 Process

    Get PDF
    Studies have been performed with the purpose of determining the optimal solvent composition of a Chalmers grouped actinide extraction (CHALMEX) solvent for the selective co-extraction of transuranic elements in a novel Grouped ActiNide EXtraction (GANEX) process. The solvent is composed of 6,6’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]-triazin-3-yl)-[2,2’]-bipyridine (CyMe4-BTBP) and tri-n-butyl phosphate (TBP) in phenyl trifluoromethyl sulfone (FS-13). The performance of the system has been shown to significantly depend on the ratios of the two extracting agents and the diluent to one another. Furthermore, the performance of the determined optimal solvent (10\ua0mM CyMe4-BTBP in 30% v/v TBP and 70% v/v FS-13) on various simulated PUREX raffinate solutions was tested. It was found that the solvent extracts all transuranic elements with high efficiency and good selectivity with regard to most other elements (fission products/activation products) present in the simulated PUREX raffinate solutions. Moreover, the solvent was found to extract a significant amount of acid. Palladium, silver, and cadmium were co-extracted along with the TRU-radionuclides, which has also been observed in other similar CHALMEX systems. The extraction of plutonium and uranium was preserved for all tested simulated PUREX raffinate solutions compared to experiments using trace amounts

    Determinants of surgeon choice in cases of suspected implant rupture following mastectomy or aesthetic breast surgery: Clinical implications

    Get PDF
    Implant ruptures may be diagnosed by physical examination, ultrasound (US), and magnetic resonance imaging (MRI). The absence of standard guidelines to approach to implant ruptures may cause unnecessary surgical revisions in the absence of radiological confirmation of prosthetic damages.The purpose of this study was to analyze the diagnostic procedures applied to patients with suspected prosthetic rupture and surgeon choices to perform a revision or to plan a clinical and radiological follow-up.We conducted a retrospective study on 62 women submitted to revision surgery due to radiological diagnosis of suspected implant rupture, following mastectomy or aesthetic reconstruction, and admitted to a Plastic Surgery Department between 2008 and 2018.Seventy-three implants, believed to be ruptured, were explanted. One-third of these were intact and unnecessarily explanted. US associated with MRI evaluation resulted in the most helpful diagnostical method.A standardized clinical and radiological approach is essential to manage breast implant ruptures successfully. An innovative protocol is proposed in order to: ensure the appropriate management of implant ruptures and prevent unnecessary surgical revisions; reduce the risk of claims for medical malpractice in cases of unsatisfactory final aesthetic results or worse than before

    Failure Physics and Reliability of GaN-Based HEMTs for Microwave and Millimeter-Wave Applications: A Review of Consolidated Data and Recent Results

    Get PDF
    Herein, the results are reviewed concerning reliability of high-electron mobility transistors (HEMTs) based on GaN, which currently represent the technology of choice for high-efficiency microwave and millimeter-wave power amplifiers. Several failure mechanisms of these devices are extensively studied, including converse piezoelectric effects, formation of conductive percolation paths at the edge of gate toward the drain, surface oxidation of GaN, time-dependent breakdown of GaN buffer, and of field-plate dielectric. For GaN HEMTs with scaled gate length, the simultaneous control of short-channel effects, deep-level dispersion, and hot-electron-induced degradation requires a careful optimization of epitaxial material quality and device design
    corecore