8 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Severe Metabolic Acidemia in a Patient with Aleukemic Leukemia

    No full text
    Malignancy associated lactic acidosis is a rare metabolic complication that may accompany various types of malignancies. To date, most cases that have been reported are associated with hematologic malignancies (lymphoma and leukemia). Many theories have been proposed to explain the pathophysiology of lactic acidosis in malignancies. We are reporting an unusual case of a 62-year-old female who presented with a complaint of generalized weakness. Patient was found to have pancytopenia and metabolic acidosis with an anion gap secondary to lactic acid in addition to non-anion gap acidosis (NAGA). The lactic acidosis resolved only after initiation of chemotherapy as she was diagnosed with B-cell acute lymphoblastic leukemia. Our patient also had a coexistent Renal Tubular Acidosis (RTA) with large kidneys. The kidney size also decreased with chemotherapy. Our case is unique as evidenced by aleukemic leukemia combined with anion gap acidosis and non-anion gap acidosis. Lactic acidosis has many different causes; although rare, hematologic malignancies should be included in the differential diagnosis regardless of cell counts or tumor burden

    A Rare and Unusual Presentation of Epstein-Barr Virus-Associated Diffuse Large B-Cell Lymphoma Involving Colon as the Primary Site

    No full text
    Lymphoproliferative malignancies can involve both nodal- and extra-nodal tissues. The most common extranodal site involved is the gastrointestinal (GI) tract, and it is secondary to the widespread primary nodal disease. However, about 33% of non-Hodgkin\u27s lymphoma primarily arise from tissues other than lymph nodes, spleen, or bone marrow, for example, GI tract, skin, or the central nervous system and are called primary extranodal lymphomas. The most common site of GI localization is stomach (50%-60%) followed by small bowel. Primary colonic lymphoma is seen only in 6% of GI lymphomas and up to 0.5%-1% of all colon malignancies. Hence, primary GI lymphoma is extremely rare, and primary colonic lymphoma is an even rarer occurrence. There is clearly a paucity of cases reported in literature resulting in unclear treatment protocol. Here, we report a case of a 51-year-old man who presented with abdominal pain, weight loss, and bright red blood per rectum. A colonoscopy revealed diffuse bleeding ulcers involving the entire colon. Pathology was consistent with primary diffuse large B-cell lymphoma arising from the colon. The patient was started on treatment with rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone
    corecore