47 research outputs found

    Laboratory Testing of Aerosol for Enclosure Air Sealing

    Get PDF
    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage

    Leakage diagnostics, sealant longevity, sizing and technology transfer in residential thermal distribution systems

    Get PDF
    This field study concentrated on measurement of duct leakage to outside the conditioned space because this is most useful in energy calculations. For room by room load/comfort requirements, the total duct leakage (including leaks to conditioned space) is more appropriate, particularly for additional comfort considerations. The objective of this field study is to help to identify major sources of uncertainty and to quantify the trade offs between different test methods. The identification of the areas requiring significant improvement will aid in future development of duct leakage test methods. For example, during the course of this study a new method for correcting house pressure tests to account for the presence of duct leakage in measured envelope leakage was developed. Each of the measurement techniques investigated has resulted from a different set of priorities and hence compromises. Thus each one of them is measuring a different physical quantity, although they all report the same parameter; duct leakage to outside at operating conditions. Given that real houses do not meet all of the simplifying assumptions that must be made to achieve similarity, the same numbers from each test method are not expected. Potentially these differences can be quite large and one of the benefits of field measurement is that the differences in the measurements helps put a realistic bound on how different some of these leakage diagnostics may be

    Field trialling of a pulse airtightness tester in a range of UK homes

    Get PDF
    A new low pressure ‘quasi-steady’ pulse technique for determining the airtightness of buildings has been developed further and compared with the standard blower-door technique for field-testing a range of typical UK homes. The reported low pressure air pulse unit (APU) has gone through several development stages related to optimizing the algorithm, pressure reference and system construction. The technique, which is compact, portable and easy to use, has been tested alongside the standard blower-door technique to measure the airtightness of a range of typical UK home types. Representative of the UK housing stock, the homes mostly have low levels of airtightness, resulting in poor energy performance, poor indoor air quality and poor thermal comfort. Some of these homes have been targeted for retrofitting and a quick, low cost and simple method for accurately determining their airtightness has clear advantages for correctly predicting the benefits of any improvements. A comparison between the results given by the two techniques is presented and the field trials indicate that the latest version of the pulse technique is reliable for determining building leakage at low pressure. Repeatability of multiple APU tests in the same house is found to be within +/-5% of the mean. A test where the leakage is increased by a known amount shows the APU is able to measure the change more accurately than the blower-door test. The APU also gives convenience in practical applications, due to being more compact and portable, plus it doesn’t need to penetrate the building envelope. The field trials demonstrate the pulse test has the potential to be a feasible alternative to the standard blower-door test
    corecore