409 research outputs found
ProsocialLearn: D2.3 - 1st system requirements and architecture
This document present the first version of the ProsocialLearn architecture covering the principle definition, the requirement collection, the “business”, “information system”, “technology” architecture as defined in the TOGAF methodology
D7.2 1st experiment planning and community management
The present deliverable, outlines the overall strategy for approaching the tasks of (a) developing and sustaining an engaged school-based community of ProsocialLearn users; and (b)planning and facilitating small-scale and large-scale school-based evaluation studies of the Prosocial Learn technological solution. It also presents the preliminary work undertaken so far, and details the activities planned for M9-15 with respect to community development and small-scale studies
Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars
Machine learning can be a powerful tool to discover new signal types in
astronomical data. We here apply it to search for long-duration transient
gravitational waves triggered by pulsar glitches, which could yield physical
insight into the mostly unknown depths of the pulsar. Current methods to search
for such signals rely on matched filtering and a brute-force grid search over
possible signal durations, which is sensitive but can become very
computationally expensive. We develop a method to search for post-glitch
signals on combining matched filtering with convolutional neural networks,
which reaches similar sensitivities to the standard method at false-alarm
probabilities relevant for practical searches, while being significantly
faster. We specialize to the Vela glitch during the LIGO-Virgo O2 run, and set
upper limits on the gravitational-wave strain amplitude from the data of the
two LIGO detectors for both constant-amplitude and exponentially decaying
signals.Comment: 19 pages, 9 figures. Comments welcom
Prospects for detecting transient quasi-monochromatic gravitational waves from glitching pulsars with current and future detectors
[eng] Pulsars are rotating neutron stars that emit periodic electromagnetic radiation. While pulsars generally slow down as they lose energy, some also experience glitches: spontaneous increases of their rotational frequency. According to several models, these glitches can also lead to the emission of long-duration transient gravitational waves (GWs). We present detection prospects for such signals by comparing indirect energy upper limits on GW strain for known glitches with the sensitivity of current and future ground-based GW detectors. We first consider the optimistic case of generic constraints based on the glitch size and find that realistic matched-filter searches in the fourth LIGO–Virgo–KAGRA observing run (O4) could make a detection, or set constraints below these indirect upper limits, for equivalents of 36 out of 726 previously observed glitches, and 74 in the O5 run. With the third-generation Einstein Telescope or Cosmic Explorer, 35–40 per cent of glitches would be accessible. When specializing to a scenario where transient mountains produce the post-glitch GW emission, following the Yim & Jones model, the indirect upper limits are stricter. Out of the smaller set of 119 glitches with measured healing parameter, as needed for predictions under that model, only 6 glitches would have been within reach for O4 and 14 for O5, with a similar percentage as before with third-generation detectors. We also discuss how this model matches the observed glitch population
Factors affecting the occurrence of proximal endoleak after endovascular abdominal aortic repair for abdominal aneurysms
Objective: This retrospective study was performed to assess the clinical and radiological variables associated with proximal type IA endoleak (EL) in patients treated with elective endovascular repair for abdominal aortic aneurysms. Methods: The chi-square test, t-test, and logistic regression analysis were performed as appropriate. A P value of <0.05 was considered statistically significant. Results: The data of 79 patients were analyzed. No mortality occurred. During follow-up (median, 28.5 months; interquartile range, 12.8–43.0 months), 10 patients developed type IA EL. In the logistic regression analysis, undersizing of the endograft diameter by <10% significantly affected the occurrence of type IA EL. When the diameter was used for measurements, less oversizing was significantly associated with a higher risk of type IA EL. When the area was used for measurements, oversizing of >20% significantly affected the occurrence of type IA EL. Conclusion: When sizing endografts, a discrepancy was noted between the measurements of the diameter and area of the proximal neck. The area might represent a more accurate measurement than the axial diameter to optimize the proximal sealing and lower the risk of developing type IA EL
A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth
Morphological convergence can be assessed using a variety of statistical methods. None of the methods proposed to date enable the visualization of convergence. All are based on the assumption that the phenotypes either converge, or do not. However, between species, morphologically similar regions of a larger structure may behave differently. Previous approaches do not identify these regions within the larger structures or quantify the degree to which they may contribute to overall convergence. Here, we introduce a new method to chart patterns of convergence on three-dimensional models using the R function conv.map. The convergence between pairs of models is mapped onto them to visualize and quantify the morphological convergence. We applied conv.map to a well-known case study, the sabre-tooth morphotype, which has evolved independently among distinct mammalian clades from placentals to metatherians. Although previous authors have concluded that sabre-tooths kill using a stabbing ‘bite’ to the neck, others have presented different interpretations for specific taxa, including the iconic Smilodon and Thylacosmilus. Our objective was to identify any shared morphological features among the sabre-tooths that may underpin similar killing behaviours. From a sample of 49 placental and metatherian carnivores, we found stronger convergence among sabre-tooths than for any other taxa. The morphological convergence is most apparent in the rostral and posterior parts of the cranium. The extent of this convergence suggests similarity in function among these phylogenetically distant species. In our view, this function is most likely to be the killing of relatively large prey using a stabbing bite. © 2021 The Authors. Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association
A method for mapping morphological convergence on three‐dimensional digital models: the case of the mammalian sabre‐tooth
Morphological convergence can be assessed using a variety of statistical methods. None of the methods proposed to date enable the visualization of convergence. All are based on the assumption that the phenotypes either converge, or do not. However, between species, morphologically similar regions of a larger structure may behave differently. Previous approaches do not identify these regions within the larger structures or quantify the degree to which they may contribute to overall convergence. Here, we introduce a new method to chart patterns of convergence on three‐dimensional models using the R function conv.map. The convergence between pairs of models is mapped onto them to visualize and quantify the morphological convergence. We applied conv.map to a well‐known case study, the sabre‐tooth morphotype, which has evolved independently among distinct mammalian clades from placentals to metatherians. Although previous authors have concluded that sabre‐tooths kill using a stabbing ‘bite’ to the neck, others have presented different interpretations for specific taxa, including the iconic Smilodon and Thylacosmilus. Our objective was to identify any shared morphological features among the sabre‐tooths that may underpin similar killing behaviours. From a sample of 49 placental and metatherian carnivores, we found stronger convergence among sabre‐tooths than for any other taxa. The morphological convergence is most apparent in the rostral and posterior parts of the cranium. The extent of this convergence suggests similarity in function among these phylogenetically distant species. In our view, this function is most likely to be the killing of relatively large prey using a stabbing bite
A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth
Morphological convergence can be assessed using a variety of statistical methods. None of the methods proposed to date enable the visualization of convergence. All are based on the assumption that the phenotypes either converge, or do not. However, between species, morphologically similar regions of a larger structure may behave differently. Previous approaches do not identify these regions within the larger structures or quantify the degree to which they may contribute to overall convergence. Here, we introduce a new method to chart patterns of convergence on three-dimensional models using the R function conv.map. The convergence between pairs of models is mapped onto them to visualize and quantify the morphological convergence. We applied conv.map to a well-known case study, the sabre-tooth morphotype, which has evolved independently among distinct mammalian clades from placentals to metatherians. Although previous authors have concluded that sabre-tooths kill using a stabbing ‘bite’ to the neck, others have presented different interpretations for specific taxa, including the iconic Smilodon and Thylacosmilus. Our objective was to identify any shared morphological features among the sabre-tooths that may underpin similar killing behaviours. From a sample of 49 placental and metatherian carnivores, we found stronger convergence among sabre-tooths than for any other taxa. The morphological convergence is most apparent in the rostral and posterior parts of the cranium. The extent of this convergence suggests similarity in function among these phylogenetically distant species. In our view, this function is most likely to be the killing of relatively large prey using a stabbing bite
Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run
Abbott et al.Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets.This material is based upon work supported by NSF's LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of KISTI-GSDC, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. We acknowledge that CHIME is located on the traditional, ancestral, and unceded territory of the Syilx/Okanagan people. We are grateful to the staff of the Dominion Radio Astrophysical Observatory, which is operated by the National Research Council of Canada. CHIME is funded by a grant from the Canada Foundation for Innovation (CFI) 2012 Leading Edge Fund (Project 31170) and by contributions from the provinces of British Columbia, Québec, and Ontario. The CHIME/FRB Project, which enabled development in common with the CHIME/Pulsar instrument, is funded by a grant from the CFI 2015 Innovation Fund (Project 33213) and by contributions from the provinces of British Columbia and Québec, and by the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto. Additional support was provided by the Canadian Institute for Advanced Research (CIFAR), McGill University, and the McGill Space Institute thanks to the Trottier Family Foundation, and the University of British Columbia. The CHIME/Pulsar instrument hardware was funded by NSERC RTI-1 grant EQPEQ 458893-2014. This research was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca). We acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) funding reference #CITA 490888-16, the Canadian Institute for Advanced Research, and the UBC Four Year Fellowship (6456). We acknowledge support from EPSRC/STFC fellowship (EP/T017325/1), ANID/FONDECYT grants 1171421 and 1211964, and NASA grants 80NSSC19K1444 and 80NSSC21K0091. This work is supported by NASA through the NICER mission and the Astrophysics Explorers Program, and uses data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory.Peer reviewe
Fox-1 family of RNA-binding proteins
The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks
- …
