240 research outputs found
Hyperosmotic stress induces metacaspase - and mitochondria - dependent apoptosis in Saccharomyces cerevisiae
Prova tipográfica (In Press)During the last years, several reports described an apoptosis-like programmed cell death process in yeast in response to different environmental aggressions. Here, evidence is presented that hyperosmotic stress induces in Saccharomyces cerevisiae a cell death process accompanied by morphological and biochemical indicators of apoptotic programmed cell death, namely chromatin condensation along the nuclear envelope, mitochondrial swelling and reduction of cristae number, production of reactive oxygen species and DNA strand breaks, with maintenance of plasma membrane integrity. Disruption of AIF1 had no effect on cell survival, but lack of Yca1p drastically reduced metacaspase activation and decreased cell death indicating that this death process was associated to activation of this protease. Supporting the involvement of mitochondria and cytochrome c in caspase activation, the mutant strains cyc1Δ cyc7Δ and cyc3Δ, both lacking mature cytochrome c, displayed a decrease in caspase activation associated to increased cell survival when exposed to hyperosmotic stress. These findings indicate that hyperosmotic stress triggers S. cerevisiae into an apoptosis-like programmed cell death that is mediated by a caspase-dependent mitochondrial pathway partially dependent on cytochrome c
Ischaemic preconditioning improves proteasomal activity and increases the degradation of δPKC during reperfusion
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, delta and epsilon PKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection. Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished delta PKC translocation by 3.8-fold and increased epsilon PKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of delta PKC decreased by 60 +/- 2.7% in response to IPC, whereas the levels of epsilon PKC did not significantly change. Prolonged ischaemia induced a 48 +/- 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 +/- 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of epsilon PKC during IPC restored delta PKC levels at the mitochondria while decreasing epsilon PKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a delta PKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol. Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, delta PKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, epsilon PKC.NIH[AA11147]Oklahoma Center for Advancement of Science and Technology[HR05-171S
LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation.
Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor
Fcγ receptor binding is required for maximal immunostimulation by CD70-Fc
Introduction: T cell expressed CD27 provides costimulation upon binding to inducible membrane expressed trimeric CD70 and is required for protective CD8 T cell responses. CD27 agonists could therefore be used to bolster cellular vaccines and anti-tumour immune responses. To date, clinical development of CD27 agonists has focussed on anti-CD27 antibodies with little attention given to alternative approaches.
Methods: Here, we describe the generation and activity of soluble variants of CD70 that form either trimeric (t) or dimer-of-trimer proteins and conduct side-by-side comparisons with an agonist anti-CD27 antibody. To generate a dimer-of-trimer protein (dt), we fused three extracellular domains of CD70 to the Fc domain of mouse IgG1 in a ‘string of beads’ configuration (dtCD70-Fc).
Results: Whereas tCD70 failed to costimulate CD8 T cells, both dtCD70-Fc and an agonist anti-CD27 antibody were capable of enhancing T cell proliferation in vitro. Initial studies demonstrated that dtCD70-Fc was less efficacious than anti-CD27 in boosting a CD8 T cell vaccine response in vivo, concomitant with rapid clearance of dtCD70-Fc from the circulation. The accelerated plasma clearance of dtCD70-Fc was not due to the lack of neonatal Fc receptor binding but was dependent on the large population of oligomannose type glycosylation. Enzymatic treatment to reduce the oligomannose-type glycans in dtCD70-Fc improved its half-life and significantly enhanced its T cell stimulatory activity in vivo surpassing that of anti-CD27 antibody. We also show that whereas the ability of the anti-CD27 to boost a vaccine response was abolished in Fc gamma receptor (FcγR)-deficient mice, dtCD70-Fc remained active. By comparing the activity of dtCD70-Fc with a variant (dtCD70-Fc(D265A)) that lacks binding to FcγRs, we unexpectedly found that FcγR binding to dtCD70-Fc was required for maximal boosting of a CD8 T cell response in vivo. Interestingly, both dtCD70-Fc and dtCD70-Fc(D265A) were effective in prolonging the survival of mice harbouring BCL1 B cell lymphoma, demonstrating that a substantial part of the stimulatory activity of dtCD70-Fc in this setting is retained in the absence of FcγR interaction.
Discussion: These data reveal that TNFRSF ligands can be generated with a tunable activity profile and suggest that this class of immune agonists could have broad applications in immunotherapy
Impact of Isotype on the Mechanism of Action of Agonist Anti-OX40 Antibodies in Cancer: Implications for Therapeutic Combinations
BACKGROUND: OX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer.
METHODS: Anti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed.
RESULTS: Isotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion.
CONCLUSIONS: These findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes
Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase
Our findings demonstrate an integral role of the p38 mitogen-activated protein kinase pathway in interleukin 6-mediated cardiac contractile dysfunction and inotrope insensitivity. Dysregulation of the p38 mitogen-activated protein kinase pathway in meningococcal septicemia suggests that this pathway may be an important target for novel therapies to reverse myocardial dysfunction in patients with meningococcal septic shock who are not responsive to inotropic support
Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors
Low Concentrations of Methamphetamine Can Protect Dopaminergic Cells against a Larger Oxidative Stress Injury: Mechanistic Study
Mild stress can protect against a larger insult, a phenomenon termed preconditioning or tolerance. To determine if a low intensity stressor could also protect cells against intense oxidative stress in a model of dopamine deficiency associated with Parkinson disease, we used methamphetamine to provide a mild, preconditioning stress, 6-hydroxydopamine (6-OHDA) as a source of potentially toxic oxidative stress, and MN9D cells as a model of dopamine neurons. We observed that prior exposure to subtoxic concentrations of methamphetamine protected these cells against 6-OHDA toxicity, whereas higher concentrations of methamphetamine exacerbated it. The protection by methamphetamine was accompanied by decreased uptake of both [3H] dopamine and 6-OHDA into the cells, which may have accounted for some of the apparent protection. However, a number of other effects of methamphetamine exposure suggest that the drug also affected basic cellular survival mechanisms. First, although methamphetamine preconditioning decreased basal pERK1/2 and pAkt levels, it enhanced the 6-OHDA-induced increase in these phosphokinases. Second, the apparent increase in pERK1/2 activity was accompanied by increased pMEK1/2 levels and decreased activity of protein phosphatase 2. Third, methamphetamine upregulated the pro-survival protein Bcl-2. Our results suggest that exposure to low concentrations of methamphetamine cause a number of changes in dopamine cells, some of which result in a decrease in their vulnerability to subsequent oxidative stress. These observations may provide insights into the development of new therapies for prevention or treatment of PD
- …