1,734 research outputs found
Recommended from our members
Identifying Place Histories from Activity Traces with an Eye to Parameter Impact.
Events that happened in the past are important for understanding the ongoing processes, predicting future developments, and making informed decisions. Important and/or interesting events tend to attract many people. Some people leave traces of their attendance in the form of computer-processable data, such as records in the databases of mobile phone operators or photos on photo sharing web sites. We developed a suite of visual analytics methods for reconstructing past events from these activity traces. Our tools combine geocomputations, interactive geovisualizations, and statistical methods to enable integrated analysis of the spatial, temporal, and thematic components of the data, including numeric attributes and texts.We also support interactive investigation of the sensitivity of the analysis results to the parameters used in the computations. For this purpose, statistical summaries of computation results obtained with different combinations of parameter values are visualized in a way facilitating comparisons. We demonstrate the utility of our approach on two large real data sets, mobile phone calls in Milano during 9 days and flickr photos made on British Isles during 5 years
Analysis of a diffusive effective mass model for nanowires
We propose in this paper to derive and analyze a self-consistent model
describing the diffusive transport in a nanowire. From a physical point of
view, it describes the electron transport in an ultra-scaled confined
structure, taking in account the interactions of charged particles with
phonons. The transport direction is assumed to be large compared to the wire
section and is described by a drift-diffusion equation including effective
quantities computed from a Bloch problem in the crystal lattice. The
electrostatic potential solves a Poisson equation where the particle density
couples on each energy band a two dimensional confinement density with the
monodimensional transport density given by the Boltzmann statistics. On the one
hand, we study the derivation of this Nanowire Drift-Diffusion Poisson model
from a kinetic level description. On the other hand, we present an existence
result for this model in a bounded domain
Recommended from our members
Increasing maritime situation awareness via trajectory detection, enrichment and recognition of events
The research presented in this paper aims to show the deployment and use of advanced technologies towards processing surveillance data for the detection of events, contributing to maritime situation awareness via trajectoriesâ detection, synopses generation and semantic enrichment of trajectories. We first introduce the context of the maritime domain and then the main principles of the big data architecture developed so far within the European funded H2020 datAcron project. From the integration of large maritime trajectory datasets, to the generation of synopses and the detection of events, the main functions of the datAcron architecture are developed and discussed. The potential for detection and forecasting of complex events at sea is illustrated by preliminary experimental results
Recommended from our members
Big data analytics for time critical maritime and aerial mobility forecasting
The correlated exploitation of heterogeneous data sources offering very large archival and streaming data is important to increase the accuracy of computations when analysing and predicting future states of moving entities. Aiming to significantly advance the capacities of systems to improve safety and effectiveness of critical operations involving a large number of moving entities in large geographical areas, this paper describes progress achieved towards time critical big data analytics solutions to user-defined challenges in the air-traffic management and maritime domains. Besides, this paper presents further research challenges concerning data integration and management, predictive analytics for trajectory and events forecasting, and visual analytics
An in vivo culture system for human embryos using an encapsulation technology: a pilot study
BACKGROUND Animal studies have demonstrated better embryo development in vivo than in vitro. This pilot study tested the feasibility of using a novel in utero culture system (IUCS) to obtain normal human fertilization and embryo development. METHODS The IUCS device comprised a perforated silicone hollow tube. The study included 13 patients (<36 years) undergoing a first intracytoplasmic sperm injection (ICSI) treatment and 167 metaphase II oocytes in three groups. In Group 1, 1-2 h after ICSI, sibling oocytes were assigned to IUCS or conventional in vitro culture. The device was retrieved on Day 1, and all zygotes were cultured in vitro till Day 5. In Group 2, fertilized oocytes were assigned on Day 1, embryos retrieved on Day 3 and all embryos cultured till Day 5. In Group 3, after Day 0 assignment, embryos were retrieved on Day 3 for blastomere biopsy and fluorescence in situ hybridization (FISH) and cultured until Day 5. The highest quality blastocysts were transferred on Day 5. RESULTS Fertilization and embryo development were comparable in the in vitro and IUCS arms, with a tendency towards better embryo quality in the IUCS. FISH analysis in Group 3 revealed more normal embryos using the IUCS (P = 0.049). Three clinical pregnancies and live births were obtained: two from the IUCS arm and one from the in vitro arm. CONCLUSIONS Our pilot study shows that this new IUCS appears to be feasible and safe, supporting normal fertilization, embryo development and normal chromosomal segregation. Furthermore, live births are possible after the transient presence of a silicone device in the uterus.Clinicaltrials.gov: NCT0048010
Barriers and facilitators to provide effective pre-hospital trauma care for road traffic injury victims in Iran: a grounded theory approach
BACKGROUND: Road traffic injuries are a major global public health problem. Improvements in pre-hospital trauma care can help minimize mortality and morbidity from road traffic injuries (RTIs) worldwide, particularly in low- and middle-income countries (LMICs) with a high rate of RTIs such as Iran. The current study aimed to explore pre-hospital trauma care process for RTI victims in Iran and to identify potential areas for improvements based on the experience and perception of pre-hospital trauma care professionals. METHODS: A qualitative study design using a grounded theory approach was selected. The data, collected via in-depth interviews with 15 pre-hospital trauma care professionals, were analyzed using the constant comparative method. RESULTS: Seven categories emerged to describe the factors that hinder or facilitate an effective pre-hospital trauma care process: (1) administration and organization, (2) staff qualifications and competences, (3) availability and distribution of resources, (4) communication and transportation, (5) involved organizations, (6) laypeople and (7) infrastructure. The core category that emerged from the other categories was defined as "interaction and common understanding". Moreover, a conceptual model was developed based on the categories. CONCLUSIONS: Improving the interaction within the current pre-hospital trauma care system and building a common understanding of the role of the Emergency Medical Services (EMS) emerged as key issues in the development of an effective pre-hospital trauma care process
Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction
Memory disorders are a common consequence of cerebrovascular accident (CVA). However, uncertainties remain about the exact anatomical correlates of memory impairment and the material-specific lateralization of memory function in the brain.
We used lesion-symptom mapping (LSM) in patients with first-time CVA to identify which brain structures are pivotal for verbal and nonverbal memory and to re-examine whether verbal and nonverbal memory functions are lateralized processes in the brain.
The cognitive performance of a relatively large cohort of 114 patients in five classic episodic memory tests was analysed with factor analysis. Two factors were extracted that distinguished the verbal and nonverbal components of these memory tests, and their scores were subsequently tested for anatomical correlates by combining univariate and multivariate LSM.
LSM analysis revealed for the verbal factor exclusively left-hemispheric insular, subcortical and adjacent white matter regions and for the nonverbal factor exclusively right-hemispheric temporal, occipital, insular, subcortical and adjacent white matter structures.
These results corroborate the long-standing hypothesis of a material-specific lateralization of memory function in the brain and confirm a robust association between right temporal lobe lesions and nonverbal memory dysfunction. The right-hemispheric correlates for the nonverbal aspects of episodic memory include not only classic memory structures in the medial temporal lobe but also a more distributed network that includes cortical and subcortical structures also known for implicit memory processes
Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare
low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The
radiogenic backgrounds in the LUX detector have been measured and compared with
Monte Carlo simulation. Measurements of LUX high-energy data have provided
direct constraints on all background sources contributing to the background
model. The expected background rate from the background model for the 85.3 day
WIMP search run is
~events~keV~kg~day
in a 118~kg fiducial volume. The observed background rate is
~events~keV~kg~day,
consistent with model projections. The expectation for the radiogenic
background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
- âŠ