48 research outputs found

    Inhibitory feedback from the motor circuit gates mechanosensory processing in C. elegans

    Full text link
    Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously we developed high throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning associated neurons SAA, RIV and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas

    Ecological compatibility of GM crops and biological control

    Get PDF
    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems (especially field-cropping systems), and present challenges and opportunities for developing biologically based pest-management programs. Interactions between biological control agents (insect predators, parasitoids, and pathogens) and GM crops exceed simple toxicological relationships, a priority for assessing risk of GM crops to non-target species. To determine the compatibility of biological control and insect-resistant and herbicide-tolerant GM crop traits within integrated pest-management programs, this synthesis prioritizes understanding the bi-trophic and prey/host-mediated ecological pathways through which natural enemies interact within cropland communities, and how GM crops alter the agroecosystems in which natural enemies live. Insect-resistant crops can affect the quantity and quality of non-prey foods for natural enemies, as well as the availability and quality of both target and non-target pests that serve as prey/hosts. When they are used to locally eradicate weeds, herbicide-tolerant crops alter the agricultural landscape by reducing or changing the remaining vegetational diversity. This vegetational diversity is fundamental to biological control when it serves as a source of habitat and nutritional resources. Some inherent qualities of both biological control and GM crops provide opportunities to improve upon sustainable IPM systems. For example, biological control agents may delay the evolution of pest resistance to GM crops, and suppress outbreaks of secondary pests not targeted by GM plants, while herbicide-tolerant crops facilitate within-field management of vegetational diversity that can enhance the efficacy of biological control agents. By examining the ecological compatibility of biological control and GM crops, and employing them within an IPM framework, the sustainability and profitability of farming may be improved

    C. ELEGANS BEHAVIORS AND THEIR MECHANOSENSORY DRIVERS

    No full text
    One of the fundamental problems in neuroscience is how behavior is generated from sensory input and internal neural states, such as the animal’s behavioral context. We present new methods and findings to address this by studying the model organism Caenorhabditis elegans. With a fully mapped connectome of 302 neurons, this nematode is a particularly good candidate to investigate the neural basis of behavior due to its rich history of scientific research and its optical transparency. First, we showcase an instrument that can record panneuronal calcium activity in the head of a freely moving worm at single neuron resolution. We find multiple neurons have correlated activity with behaviors such as forward, backward, and turning locomotion. We also developed a high-throughput method to measure sensorimotor transformations from soft touch stimulation to locomotory behavior. We use automated behavior segmentation and reverse correlation to reveal how mechanosensory stimuli influences behavioral transitions. Our results show that C. elegans make locomotory decisions based on both the temporal history of the stimulus and its own behavioral context in a predictable manner. Continuing our investigation of the soft touch circuit, we developed a more advanced apparatus that can probe worm behavioral response to excitatory and inhibitory optogenetic stimuli with sub-animal level spatial resolution. This instrument has the ability to target the heads and tails of many animals in parallel, and can tailor the stimuli based on real-time behavior information. Preliminary experiments demonstrate that it can evoke the same optogenetically driven touch response akin to mechanical activation of the touch neurons

    Mirror Clock: A Strategy for Identifying Atomic Clock Frequency Jumps

    No full text
    Atomic clock frequency jumps directly influence the accuracy and reliability of timekeeping systems. The necessary corrections are typically implemented by postprocessing mutual comparison data between multiple atomic clocks based on the overly strict assumption that these atomic clocks are independent of each other. This paper describes the concept of a mirror clock, which enables atomic clock frequency jumps to be identified in real time without any assumptions. By comparing whether the real measured data and a corresponding mirror clock prediction fall within a confidence interval determined by the uncertainty of past physical clock data, atomic clock frequency jumps can be effectively identified and corrected. The results of several experiments using three hydrogen masers verify that the precision and recall of simultaneous jump identification reach 96.41% and 73.49%, respectively

    Example of a worm aborting a turn and reversing when neuron AVA was activated following the onset of the turn.

    No full text
    Animals express Chrimson in neuron AVA (strain name: AML17). Stimulation was delivered upon the onset of a turn in closed loop. Green dot denotes the animal’s head. Green line denotes its centerline. Yellow line shows the trajectory of a point midway along the animal’s centerline over the past 10 s. Red indicates area illuminated by red light. (MP4)</p

    Example of a worm receiving optogenetic stimulation of its gentle-touch mechanosensory neurons during the onset of a turn.

    No full text
    Recording is from [19]. Animals express Chrimson in gentle-touch mechanosensory neurons (strain name: AML67). This worm does not reverse in response to stimulation. Stimuli was triggered in closed-loop by the animal’s turn. Green dot denotes the animal’s head. Green line denotes its centerline. Yellow line shows the trajectory of a point midway along the animal’s centerline over the past 10 s. Red indicates area illuminated by red light. (MP4)</p

    List of optogenetic measurements performed during behavior.

    No full text
    List of optogenetic measurements performed during behavior.</p
    corecore