69 research outputs found
Product ion distributions for the reactions of NO(+) with some physiologically significant aldehydes obtained using a SRI-TOF-MS instrument
Product ion distributions for the reactions of NO(+) with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2-C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M-H)(+) ions. Small fractions of the adduct ion, NO(+)M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M(+) parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO(+) mode
Product ion distributions for the reactions of NO+ with some N-containing and O-containing heterocyclic compounds obtained using SRI-TOF-MS
Product ion distributions for the reactions of NO+ with nine O-containing and six N-containing heterocyclic compounds present in human volatilome have been determined under the conditions of a Selective Reagent Ionization Time of Flight Mass Spectrometer (SRI-TOF-MS) at E/N values in the drift tube reactor ranging from 90 to 130 Td. This study was undertaken to provide the kinetics data by which these heterocyclic compounds could be analyzed in biogenic media using SRI-TOF-MS. The specific heterocyclic compounds are furan, 2-methylfuran, 3-methylfuran, 2,5-dimethylfuran, 2-pentylfuran, 2,3-dihydrofuran, 1,3-dioxolane, 2-methyl-1,3-dioxolane, Îł-butyrolactone, pyrrole, 1-methylpyrrole, pyridine, 2,6-dimethylpyridine, pyrimidine, and 4-methylpyrimidine. Charge transfer was the dominant mechanism in the majority of these NO+ reactions generating the respective M+ parent cation, but in the pyridine, pyrimidine, and 4-methylpyrimidine reactions, stable NO+M adduct ions were the major products with M+ ions as minor products. The reactions of dioxolanes with NO+ proceeded by hydride ion transfer only producing (MâH)+ ions. Fragmentation of the excited nascent product ions (M+)* did not occur for the majority of these reactions under the particular chosen conditions of the SRI-TOF-MS reactor, but partial fragmentation did occur in the 2,3-dihydrofuran and 2-pentylfuran reactions. However, lowering of the E/N in the drift tube suppresses fragmentation of (M+)* ions and promotes the formation of NO+M adduct ions, whereas increasing E/N has the opposite effect, as expected. The product ion distributions were seen to be independent of the humidity of the sample gas
The role of mathematical modeling in VOC analysis using isoprene as a prototypic example
Isoprene is one of the most abundant endogenous volatile organic compounds
(VOCs) contained in human breath and is considered to be a potentially useful
biomarker for diagnostic and monitoring purposes. However, neither the exact
biochemical origin of isoprene nor its physiological role are understood in
sufficient depth, thus hindering the validation of breath isoprene tests in
clinical routine.
Exhaled isoprene concentrations are reported to change under different
clinical and physiological conditions, especially in response to enhanced
cardiovascular and respiratory activity. Investigating isoprene exhalation
kinetics under dynamical exercise helps to gather the relevant experimental
information for understanding the gas exchange phenomena associated with this
important VOC.
A first model for isoprene in exhaled breath has been developed by our
research group. In the present paper, we aim at giving a concise overview of
this model and describe its role in providing supportive evidence for a
peripheral (extrahepatic) source of isoprene. In this sense, the results
presented here may enable a new perspective on the biochemical processes
governing isoprene formation in the human body.Comment: 17 page
Laser spectroscopy for breath analysis : towards clinical implementation
Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe
Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis
Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.info:eu-repo/semantics/publishedVersio
Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer
RATIONALE: The reactions of NO(+) with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO(+) ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS: Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds - dimethyl selenide and dimethyl diselenide. RESULTS: Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M(+) cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO(+) M, formed by ion-molecule association, and [M-H](+) ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)(+) * adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3 , CH4 and/or C2 H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS: The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO(+) mode
- âŠ