58 research outputs found

    The Use of a Numerical Weather Prediction Model to Simulate Near-Field Volcanic Plumes

    Get PDF
    In this paper, a state-of the art numerical weather prediction (NWP) model is used to simulate the near-field plume of a Plinian-type volcanic eruption. The NWP model is run at very high resolution (of the order of 100 m) and includes a representation of physical processes, including turbulence and buoyancy, that are essential components of eruption column dynamics. Results are shown that illustrate buoyant gas plume dynamics in an atmosphere at rest and in an atmosphere with background wind, and we show that these results agree well with those from theoretical models in the quiescent atmosphere. For wind-blown plumes, we show that features observed in experimental and natural settings are reproduced in our model. However, when comparing with predictions from an integral model using existing entrainment closures there are marked differences. We speculate that these are signatures of a difference in turbulent mixing for uniform and shear flow profiles in a stratified atmosphere. A more complex implementation is given to show that the model may also be used to examine the dispersion of heavy volcanic gases such as sulphur dioxide. Starting from the standard version of the weather research and forecasting (WRF) model, we show that minimal modifications are needed in order to model volcanic plumes. This suggests that the modified NWP model can be used in the forecasting of plume evolution during future volcanic events, in addition to providing a virtual laboratory for the testing of hypotheses regarding plume behaviour

    The Dynamics of Observed Lee Waves over the Snæfellsnes Peninsula in Iceland

    Get PDF
    On 20 October 2016, aircraft observations documented a significant train of lee waves above and downstream of the Snæfellsnes Peninsula on the west coast of Iceland. Simulations of this event with the Weather Research and Forecasting (WRF) Model provide an excellent representation of the observed structure of these mountain waves. The orographic features producing these waves are characterized by the isolated Snæfellsjökull volcano near the tip of the peninsula and a fairly uniform ridge along its spine. Sensitivity simulations with the WRF Model document that the observed wave train consists of a superposition of the waves produced individually by these two dominant orographic features. This behavior is consistent with idealized simulations of a flow over an isolated 3D mountain and over a 2D ridge, which reproduce the essential behavior of the observed waves and those captured in the WRF simulations. Linear analytic analysis confirms the importance of a strong inversion at the top on the boundary layer in promoting significant wave activity extending far downstream of the terrain. However, analysis of the forced and resonant modes for a two-layer atmosphere with a capping inversion suggest that this wave train may not be produced by resonant modes whose energy is trapped beneath the inversion. Rather, these appear to be vertically propagating modes with very small vertical group velocity that can persist far downstream of the mountain. These vertically propagating waves potentially provide a mechanism for producing near-resonant waves farther aloft due to interactions with a stable layer in the midtroposphere

    A case study of possible future summer convective precipitation over the UK and Europe from a regional climate projection

    No full text
    Climate change caused by green house gas emissions is now following the trend of rapid warming consistent with a RCP8.5 forcing. Climate models are still unable to represent the mesoscale convective processes that occur at resolutions ∼O(3 km) and are not capable of resolving precipitation patterns in time and space with sufficient accuracy to represent convection. In this article, the UK Met Office precipitation observations are compared with the simulations for the period 1990–1995 followed by a simulation of a near‐future period 2031–2036 for a regional nested weather model. The convection‐permitting model, resolution ∼O(3 km), provides a good correspondence to the observational precipitation data and demonstrates the importance of explicit convection for future summer precipitation estimates. The UK summer precipitation is reduced slightly (∼10%) for 2031–2036 and there is no evidence of an increase in the peak maximum hourly precipitation magnitude. A similar pattern is observed over the whole European inner model domain. The results using the Kain–Fritsch convective parameterization scheme at a resolution ∼O(12 km) in the outer domain increase summer precipitation by ∼10% for the UK. The average precipitation rate per event increases, dry periods extend and wet periods shorten. As part of the change, 10‐m winds of <3 m s⁻¹ become more common – a scenario that would impact on power generation from wind turbines through calmer conditions and cause more frequent pollution episodes

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Foraging for foundations in decision neuroscience: insights from ethology

    Get PDF
    Modern decision neuroscience offers a powerful and broad account of human behaviour using computational techniques that link psychological and neuroscientific approaches to the ways that individuals can generate near-optimal choices in complex controlled environments. However, until recently, relatively little attention has been paid to the extent to which the structure of experimental environments relates to natural scenarios, and the survival problems that individuals have evolved to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches from the fields of ethology and behavioural ecology, which concentrate on the contextual and functional correlates of decisions made about foraging and escape and address these lacunae

    Nonequilibrium thermodynamics and maximum entropy production in the Earth system

    Full text link

    Detailed analysis of valley flows in complex terrain - A case study from the COPS field experiment

    Get PDF
    The Convective & Orographically-induced Precipitation Study (COPS) was a large international field campaign that took place in the complex low-mountain region of the Black Forest, Germany, during summer 2007. Intensive Observations Period (IOP) 9c 20th July, & aimed to observe the development & modification of a Mesoscale Convective System (MCS), which had convection embedded within its frontal zone, as it passed over the COPS region from south-west to north-east. A gust front, emanating from MCS outflow, together with orographic lifting & a thermally-driven convergence line combined to generate an arc of severe convective activity east of the COPS region & ahead of the MCS. In-situ & remote sensing surface observations show that the complex COPS orography significantly modified the shape, structure & path of the gust front. This, in turn, locally enhanced the pre-frontal convergence zone, eventually leading to convective initiation. This paper will discuss the way in which the MCS gust front became decoupled from the synoptic flow aloft. Observations show substantial differences in the magnitude & direction of the gust front between sites located on mountain tops & those located in valleys. Differences between valley sites are also identified depending on the valley orientation. Valleys aligned perpendicular to the synoptic-scale MCS track appear to be sheltered from the gust front by steep valley gradients. Valleys in the eastern COPS region that are roughly aligned parallel to the MCS track, appear to organise the path of the gust front out of the Black Forest & into the regions of strong convergence where the convective cells subsequently form. Flow features are explained & further analysed by comparison with high resolution simulations of the IOP using the Weather Research & Forecasting numerical model (WRF)
    corecore