168 research outputs found
An exploratory metabolomic comparison of participants with fast or absent functional progression from 2CARE, a randomized, double-blind clinical trial in Huntington\u27s disease.
Huntington\u27s disease (HD) is increasingly recognized for diverse pathology outside of the nervous system. To describe the biology of HD in relation to functional progression, we previously analyzed the plasma and CSF metabolome in a cross-sectional study of participants who had various degrees of functional impairment. Here, we carried out an exploratory study in plasma from HD individuals over a 3-year time frame to assess whether differences exist between those with fast or absent clinical progression. There were more differences in circulating metabolite levels for fast progressors compared to absent progressors (111 vs 20, nominal p \u3c 0.05). All metabolite changes in faster progressors were decreases, whereas some metabolite concentrations increased in absent progressors. Many of the metabolite levels that decreased in the fast progressors were higher at Screening compared to absent progressors but ended up lower by Year 3. Changes in faster progression suggest greater oxidative stress and inflammation (kynurenine, diacylglycerides, cysteine), disturbances in nitric oxide and urea metabolism (arginine, citrulline, ornithine, GABR), lower polyamines (putrescine and spermine), elevated glucose, and deficient AMPK signaling. Metabolomic differences between fast and absent progressors suggest the possibility of predicting functional decline in HD, and possibly delaying it with interventions to augment arginine, polyamines, and glucose regulation
Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nM menthol alone also increased nAChR number and favored the formation of (α4)_3(β2)_2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)_2(β2)_3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway
Child stunting is associated with low circulating essential amino acids
AbstractBackgroundStunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children.MethodsWe used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59months, from rural Malawi. Children underwent anthropometry.FindingsSixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p<0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations.InterpretationOur findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids
Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States
To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.Fil: Arias, Hugo Rubén. Midwestern University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gumilar, Fernanda Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Rosenberg, Avraham. National Institutes of Health; Estados UnidosFil: Targowska Duda, Katarzyna M.. Medical University of Lublin; PoloniaFil: Feuerbach, Dominik. Novartis Institutes for Biomedical Research; SuizaFil: Jozwiak, Krzysztof. Medical University of Lublin; PoloniaFil: Moaddel, Ruin. National Institutes of Health; Estados UnidosFil: Wainer, Irving W.. National Institutes of Health; Estados UnidosFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin
Randomized Pharmacokinetic Crossover Study Comparing 2 Curcumin Preparations in Plasma and Rectal Tissue of Healthy Human Volunteers
Curcumin is poorly absorbed, which is interest in new preparations. However, little is known about variations in its pharmacokinetics and tissue bioavailability between formulations. In this randomized, crossover study we evaluated the relationship between steady-state plasma and rectal tissue curcuminoid concentrations using standard and phosphatidylcholine curcumin extracts. There was no difference in the geometric mean plasma AUCs when adjusted for the 10-fold difference in curcumin dose between the 2 formulations. Phosphatidylcholine curcumin extract yielded only 20% to 30% plasma demethoxycurcumin and bisdemethoxycurcumin conjugates compared to standard extract, yet yielded 20-fold greater hexahydrocurcumin. When adjusting for curcumin dose, tissue curcumin concentrations were 5-fold greater for the phosphatidylcholine extract. Improvements in curcuminoid absorption due to phosphatidylcholine are not uniform across the curcuminoids. Furthermore, curcuminoid exposures in the intestinal mucosa are most likely due to luminal exposure rather than to plasma disposition. Finally, once-daily dosing is sufficient to maintain detectable curcuminoids at steady state in both plasma and rectal tissues
Recommended from our members
Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic -Cells
Objective: Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting -cells in the islets of Langerhans. Insulin itself positively regulates -cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate -cell proliferation and if they influence insulin action. Research Design and Methods: We measured EC production in isolated human and mouse islets and -cell line in response to glucose and KCl. We evaluated human and mouse islets, several -cell lines, and CB1R-null (CB1R) mice for the presence of a fully functioning EC system. We investigated if ECs influence -cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. Results: ECs are generated within -cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in -cells and leads to increased -cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased -cell proliferation and mass, coupled with enhanced IR signaling in -cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on -cells in a G-dependent manner. Conclusions: These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of -cell proliferation and will serve as a basis for developing new therapeutic interventions to enhance -cell function and proliferation in diabetes
Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging
Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20–87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active). Over 4,000 proteins were quantified, and higher self-reported physical activity was associated with substantial overrepresentation of proteins associated with mitochondria, TCA cycle, structural and contractile muscle, and genome maintenance. Conversely, proteins related to the spliceosome, transcription regulation, immune function, and apoptosis, DNA damage, and senescence were underrepresented with higher self-reported activity. These differences in observed protein expression were related to different levels of physical activity in daily life and not intense competitive exercise. In most instances, differences in protein levels were directly opposite to those reported in the literature observed with aging. These data suggest that being physically active in daily life has strong and biologically detectable beneficial effects on muscle
Direct Dynamic Protein-Affinity Selection Mass-Spectrometry
A new methodology is described enabling the affinity screening of potential ligands towards the human estrogen receptor alpha ligand binding domain (ERα-LBD). In-solution incubation is performed of the analyte and the His-tagged ERα-LBD. The bound complex is immobilized on a nickel-loaded protein-affinity selection column, where after the unbound fraction is removed. The immobilized protein–ligand complex is exposed to a decreased pH value and an increased organic modifier concentration releasing the ligand for MS detection, and precipitating the proteins on a filter positioned between the affinity column and the mass spectrometer. The trapping column can be regenerated for reuse at least 70 times. The advantages of the methodology over existing methodologies are the absence of a pre-concentration as well as a chromatographic separation step, resulting in a significantly shorter analysis time compared to previously described procedures, and in addition, allowing the determination of solutes with unfavorable chromatographic properties. The overall analysis time now can be reduced about 250% to approximately 6 min. Replacing the filters after every measurement results in an intra-day standard deviation of 14.8% and an inter-day standard deviation of 21.3%
Conserved and species-specific molecular denominators in mammalian skeletal muscle aging
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process
- …