26,217 research outputs found

    Analytical Approximations to Galaxy Clustering

    Get PDF
    We discuss some recent progress in constructing analytic approximations to the galaxy clustering. We show that successful models can be constructed for the clustering of both dark matter and dark matter haloes. Our understanding of galaxy clustering and galaxy biasing can be greatly enhanced by these models.Comment: 10 pages, Latex, crckapb.sty, figure included, to appear in the proceedings of Ringberg Workshop on Large-Scale Structure (ed. D. Hamilton; Kluwer Academic Publishers

    Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation

    Get PDF
    To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use

    Calculations of the spectral nature of the microwave emission from soils

    Get PDF
    The brightness temperatures for a set of soil profiles observed at USDA facilities in Arizona and Georgia were calculated at the wavelengths of 2.8, 6, 11, 21, and 49 cm using a coherent radiative transfer model. The soil moisture sampling depth is found to be a function of wavelength and is in the range 0.06 to 0.1 of a wavelength. The thermal sampling depth also depends on wavelength and is approximately equal to one wavelength at dry soil condition and 0.1 - 0.5 wavelengths at wet soil conditions. Calculated values of emissivity show strong diurnal variations when the soils are wet, while there is little diurnal change when the soil is dry. The soil moistures within the four depth intervals of 0-2, 0-5, 0-9, and 0-15 cm were parameterized as function of the calculated emissivity and brightness temperature. Best-fit parameters and correlation coefficients are presented for five wavelengths. Interrelationships among the effective temperature, surface temperature, and emissivity are displayed

    A parameterization of effective soil temperature for microwave emission

    Get PDF
    A parameterization of effective soil temperature is discussed, which when multiplied by the emissivity gives the brightness temperature in terms of surface (T sub o) and deep (T sub infinity) soil temperatures as T = T sub infinity + C (T sub o - T sub infinity). A coherent radiative transfer model and a large data base of observed soil moisture and temperature profiles are used to calculate the best-fit value of the parameter C. For 2.8, 6.0, 11.0, 21.0 and 49.0 cm wavelengths. The C values are respectively 0.802 + or - 0.006, 0.667 + or - 0.008, 0.480 + or - 0.010, 0.246 + or - 0.009, and 0,084 + or - 0.005. The parameterized equation gives results which are generally within one or two percent of the exact values

    Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

    Full text link
    Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion

    A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering

    Get PDF
    We propose a simple and accurate method for computing analytically the mass correlation function for cold dark matter and scale-free models that fits N-body simulations over a range that extends from the linear to the strongly non-linear regime. The method, based on the dynamical evolution of the pair conservation equation, relies on a universal relation between the pair-wise velocity and the smoothed correlation function valid for high and low density models, as derived empirically from N-body simulations. An intriguing alternative relation, based on the stable-clustering hypothesis, predicts a power-law behavior of the mass correlation function that disagrees with N-body simulations but conforms well to the observed galaxy correlation function if negligible bias is assumed. The method is a useful tool for rapidly exploring a wide span of models and, at the same time, raises new questions about large scale structure formation.Comment: 10 pages, 3 figure

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r∼1h−1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h−1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro
    • …
    corecore