11 research outputs found

    Multistage Passive and Active Delivery of Radiolabeled Nanogels for Superior Tumor Penetration Efficiency

    No full text
    Development of nanosized drug delivery systems in cancer therapy is directed toward improving tumor selectivity and minimizing damages of healthy tissue. We introduce a delivery system with synergistic optimization and combination of passive and active targeting strategies. The approach is based on radiopeptide labeled redox sensitive hydrophilic nanogels, which exploit passive targeting by the enhanced permeability and retention effect while avoiding elimination by the mononuclear phagocyte system and fast hepatic and renal clearance. The targeting peptide promotes endocytotic uptake of the nanogels by cancer cells. Specific to this delivery system, tumor-specific degradation by the antioxidant glutathione enhances penetration and retention within the tumor tissue. Using in vivo molecular imaging we demonstrate the superiority of combined passive and active targeting with down-sizable nanogels over exclusive passive targeting. Furthermore, the homogeneous tumor distribution of functionalized nanogels compared to the clinically used mere radiopeptide supports the potentially high impact of our targeting concept

    Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase

    No full text
    To improve our mechanistic understanding of zinc metalloenzymes, we report a joint computational and experimental study of a minimal carbonic anhydrase (CA) mimic, a 22-residue Zn-finger hydrolase. We combine classical molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free energy simulations with ambient and high-pressure kinetic measurements to investigate the mechanism of the hydrolysis of the substrate <i>p</i>-nitrophenylacetate (pNPA). The zinc center of the hydrolase prefers a pentacoordinated geometry, as found in most naturally occurring CAs and CA-like enzymes. Two possible mechanisms for the catalytic reaction are investigated. The first one is analogous to the commonly accepted mechanism for CA-like enzymes: a sequential pathway, in which a Zn<sup>2+</sup>-bound hydroxide acts as a nucleophile and the hydrolysis proceeds through a tetrahedral intermediate. The initial rate-limiting step of this reaction is the nucleophilic attack of the hydroxide on pNPA to form the tetrahedral intermediate. The computed free energy barrier of 18.5 kcal/mol is consistent with the experimental value of 20.5 kcal/mol obtained from our kinetics experiments. We also explore an alternative reverse protonation pathway for the hydrolase, in which a nearby hydroxide ion from the bulk acts as the nucleophile (instead of a zinc-bound hydroxide). According to QM/MM MD simulations, hydrolysis occurs spontaneously along this pathway. However, this second scenario is not viable in our system, as the tertiary structure of the hydrolase lacks a suitably positioned residue that would act as a general base and generate a hydroxide ion from a nearby bulk water molecule. Hence, our combined theoretical and experimental study indicates that the investigated minimal CA mimic retains the essential mechanistic features of CA-like enzyme catalysis. The high-pressure experiments show that its catalytic efficiency can be enhanced by applying hydrostatic pressure. According to the simulations, more drastic improvements might be afforded by mutations that make the reverse protonation pathway accessible

    Acute kidney disease beyond day 7 after major surgery: a secondary analysis of the EPIS-AKI trial

    No full text
    Purpose: Acute kidney disease (AKD) is a significant health care burden worldwide. However, little is known about this complication after major surgery. Methods: We conducted an international prospective, observational, multi-center study among patients undergoing major surgery. The primary study endpoint was the incidence of AKD (defined as new onset of estimated glomerular filtration rate (eCFR) &lt; 60&nbsp;ml/min/1.73&nbsp;m2 present on day 7 or later) among survivors. Secondary endpoints included the relationship between early postoperative acute kidney injury (AKI) (within 72&nbsp;h after major surgery) and subsequent AKD, the identification of risk factors for AKD, and the rate of chronic kidney disease (CKD) progression in patients with pre-existing CKD. Results: We studied 9510 patients without pre-existing CKD. Of these, 940 (9.9%) developed AKD after 7&nbsp;days of whom 34.1% experiencing an episode of early postoperative-AKI. Rates of AKD after 7&nbsp;days significantly increased with the severity (19.1% Kidney Disease Improving Global Outcomes [KDIGO] 1, 24.5% KDIGO2, 34.3% KDIGO3; P &lt; 0.001) and duration (15.5% transient vs 38.3% persistent AKI; P &lt; 0.001) of early postoperative-AKI. Independent risk factors for AKD included early postoperative-AKI, exposure to perioperative nephrotoxic agents, and postoperative pneumonia. Early postoperative-AKI carried an independent odds ratio for AKD of 2.64 (95% confidence interval [CI] 2.21-3.15). Of 663 patients with pre-existing CKD, 42 (6.3%) had worsening CKD at day 90. In patients with CKD and an episode of early AKI, CKD progression occurred in 11.6%. Conclusion: One in ten major surgery patients developed AKD beyond 7&nbsp;days after surgery, in most cases without an episode of early postoperative-AKI. However, early postoperative-AKI severity and duration were associated with an increased rate of AKD and early postoperative-AKI was strongly associated with AKD independent of all other potential risk factors

    Author Correction: The landscape of viral associations in human cancers

    No full text
    author correctio

    Integrative pathway enrichment analysis of multivariate omics data

    No full text
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations

    Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer

    No full text
    Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.A pan-cancer genomic analysis reports the effects of structural variations on chromatin domains (TADs). Most TAD disruptions do not result in appreciable changes in expression of nearby genes

    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing

    No full text
    Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer
    corecore