55 research outputs found

    Comparison of House Spraying and Insecticide-Treated Nets for Malaria Control.

    Get PDF
    The efficacies of using residual house spraying and insecticide-treated nets against malaria vectors are compared, using data from six recent comparisons in Africa, Asia and Melanesia. By all the entomological and malariological criteria recorded, pyrethroid-treated nets were at least as efficacious as house spraying with dichlorodiphenyltrichloroethane (DDT), malathion or a pyrethroid. However, when data from carefully monitored house spraying projects carried out between the 1950s and 1970s at Pare-Taveta and Zanzibar (United Republic of Tanzania), Kisumu (Kenya) and Garki (Nigeria) are compared with recent insecticide-treated net trials with apparently similar vector populations, the results with the insecticide-treated nets were much less impressive. Possible explanations include the longer duration of most of the earlier spraying projects and the use of non-irritant insecticides. Non-irritant insecticides may yield higher mosquito mortalities than pyrethroids, which tend to make insects leave the site of treatment (i.e. are excito-repellent). Comparative tests with non-irritant insecticides, including their use on nets, are advocated. The relative costs and sustainability of spraying and of insecticide-treated net operations are briefly reviewed for villages in endemic and epidemic situations and in camps for displaced populations. The importance of high population coverage is emphasized, and the advantages of providing treatment free of charge, rather than charging individuals, are pointed out

    Relationships between CO2 soil degassing and regional/local fault systems in the Kiejo-Mbaka geothermal prospect (Tanzania)

    Get PDF
    The Kiejo-Mbaka geothermal prospect in the Mbeya region of SW Tanzania was surveyed for geothermal exploration in a recent study co-financed by the Ministry for Foreign Affairs in Iceland and by the Nordic Development Fund (NDF) and implemented by the Tanzania Geothermal Development Company Limited (TGDC). A multidisciplinary approach was adopted, including geological, geochemical and geophysical surveys. The prospect falls within the southern sector of the Rungwe Volcanic Province (RVP), which is situated at the triple junction of the Rukwa, Usangu and Karonga basins of the East Africa Rift System. Recent volcanism is concentrated in the northern sector of the RVP, whereas recent eruptions were sustained by small magma batches derived from deep sources in the prospect area. Local stratigraphy is mainly characterized by Pre-Cambrian rocks of the metamorphic-intrusive complex covered by Pleistocene volcanic products (basalts and ignimbrites) with a thickness never exceeding 200 m. Several fault systems are present, among which the most important ones trend NW-SE and N-S. The main tectonic feature is the NW-SE-trending Mbaka fault, which controls the local emergence of hot waters at Ilwalilo and Kilambo-Kajala (maximum discharge temperature of 64\ub0C), delimits to the W the Mbaka ridge, and is associated with a series of parallel structures extending in the plain. Both the gravimetric and the electromagnetic surveys concur in identifying the existence of a block corresponding to the above mentioned Mbaka ridge and characterized by a pronounced positive Bouguer anomaly and by high resistivity, due to the proximity of basement rocks. At Kiejo, Ikama, and Lufundo there are gas vents emitting CO2-rich gases, which are captured by drilled wells in the first two sites. Since the Kiejo-Mbaka prospect is classified as an extensional domain, in which flow-paths of geothermal fluids are fault-controlled, part of the geochemical survey was addressed to identify and define the relationships between fluid flow and structures at local scale, in selected hydrothermal areas including Kilambo-Kajala, Ilwalilo and Kiejo. Taking into account the regional fault distribution and preliminary results obtained during the field surveys, also others areas were included in the investigation (i.e. Lufundo, Itende and Kikusya). A total of 598 soil CO2 flux and temperature measurements (~1 m depth) were carried out. Total output was estimated and isoflux maps were elaborated for each investigated sector. In general, CO2 fluxes appear to be controlled by NW-SE and N-S trending faults and fractures. The former prevails at Kiejo, Kilambo-Kajala and Ilwalilo, which is not surprising for Kilambo-Kajala and Ilwalilo, since the hot springs are positioned along the Mbaka fault. In contrast, the N-S trend dominates at Lufundo

    Decentralization of viral load testing to improve HIV care and treatment cascade in rural Tanzania: observational study from the Kilombero and Ulanga Antiretroviral Cohort

    Get PDF
    INTRODUCTION: Monitoring HIV viral load (HVL) in people living with HIV (PLHIV) on antiretroviral therapy (ART) is recommended by the World Health Organization. Implementation of HVL testing programs have been affected by logistic and organizational challenges. Here we describe the HVL monitoring cascade in a rural setting in Tanzania and compare turnaround times (TAT) between an on-site and a referral laboratory. METHODS: In a nested study of the prospective Kilombero and Ulanga Antiretroviral Cohort (KIULARCO) we included PLHIV aged >/= 15 years, on ART for >/= 6 months after implementation of routine HVL monitoring in 2017. We assessed proportions of PLHIV with a blood sample taken for HVL, whose results came back, and who were virally suppressed (HVL /= 1000 copies/mL). We described the proportion of PLHIV with unsuppressed HVL and adequate measures taken as per national guidelines and outcomes among those with low-level viremia (LLV; 100-999 copies/mL). We compare TAT between on-site and referral laboratories by Wilcoxon rank sum tests. RESULTS: From 2017 to 2020, among 4,454 PLHIV, 4,238 (95%) had a blood sample taken and 4,177 (99%) of those had a result. Of those, 3,683 (88%) were virally suppressed. In the 494 (12%) unsuppressed PLHIV, 425 (86%) had a follow-up HVL (102 (24%) within 4 months and 158 (37%) had virologic failure. Of these, 103 (65%) were already on second-line ART and 32/55 (58%) switched from first- to second-line ART after a median of 7.7 months (IQR 4.7-12.7). In the 371 (9%) PLHIV with LLV, 327 (88%) had a follow-up HVL. Of these, 267 (82%) resuppressed to < 100 copies/ml, 41 (13%) had persistent LLV and 19 (6%) had unsuppressed HVL. The median TAT for return of HVL results was 21 days (IQR 13-39) at the on-site versus 59 days (IQR 27-99) at the referral laboratory (p < 0.001) with PLHIV receiving the HVL results after a median of 91 days (IQR 36-94; similar for both laboratories). CONCLUSION: Robust HVL monitoring is achievable in remote resource-limited settings. More focus is needed on care models for PLHIV with high viral loads to timely address results from routine HVL monitoring

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    Recommendations for environmental risk assessment of gene drive applications for malaria vector control

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this record. Building on an exercise that identified potential harms from simulated investigational releases of a population suppression gene drive for malaria vector control, a series of online workshops identified nine recommendations to advance future environmental risk assessment of gene drive applications.Bill and Melinda Gates FoundationOpen Philanthrop

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease

    Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by <it>Anopheles gambiae </it>sensu lato (s.l.) mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, <it>An. gambiae </it>sensu stricto (s.s.) is the primary malaria vector. The goal of the paper is to evaluate the importance of <it>An gambiae </it>s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions.</p> <p>Methods</p> <p>The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour.</p> <p>Results</p> <p>Surprisingly high levels of outdoor biting by <it>An. gambiae </it>senso stricto and <it>An. melas </it>vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, <it>An. gambiae </it>s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of <it>An. gambiae </it>s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality.</p> <p>Conclusions</p> <p><it>An. gambiae </it>s.l. mosquitoes currently seek hosts in outdoor venues as much as indoors in the Punta Europa region of Bioko Island. This contrasts with an earlier pre-intervention observation of exclusive endophagy of <it>An. gambiae </it>in this region. In light of this finding, it is proposed that the long term indoor application of insecticides may have resulted in an adaptive shift toward outdoor host seeking in <it>An. gambiae </it>s.s. on Bioko Island.</p

    Standardizing Operational Vector Sampling Techniques for Measuring Malaria Transmission Intensity: Evaluation of six Mosquito Collection Methods in Western Kenya.

    Get PDF
    Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of vector trapping methods across multiple countries. Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates were estimated by negative binomial regression. When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l (95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT (RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting traps (PRT indoor, BRT indoor, and BRT outdoor; RR < 0.08 for all). For Anopheles funestus, relative catch rates were high for ITT (RR = 1.21); moderate for HLC outdoor (RR = 0.47), CDC-LT (RR = 0.69), and WET (RR = 0.49); and low for all resting traps (RR < 0.02 for all). At finer geographic scales, however, efficacy of each trap type varied from district to district. ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in western Kenya. Ultimately, choice of collection method for operational surveillance should be driven by trap efficacy and scalability, rather than fine-scale precision with respect to HLC. When compared with recent, similar trap evaluations in Tanzania and Zambia, these data suggest that traps which actively lure host-seeking females will be most useful for surveillance in the face of declining vector densities

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p
    corecore