90 research outputs found
Efficiency of different doses of mineral fertilizers for winter wheat
The regulated use of various types of mineral fertilizers in crop production directly affects the size and harvest quality of field crops, in particular winter wheat, which makes high demands on the diet. Even the most fertile soils, like chernozems, can be depleted over the years, with their constant use for crops and intense anthropogenic impact. The article presents the issues of mineral nutrition of varieties of winter soft wheat in the soil and climatic conditions of the Republic of Adygea. In the course of the research, it has been found that a high level of increase in the yield of winter wheat grain when using various doses of mineral fertilizer can be ensured due to the formation of timely and friendly seedlings of the culture, an increase in the total tilling capacity – 576 pcs/m2 and the productive one – 313 pcs/m2, in the intensity of accumulation of dry biomass by plants – 328 g/100 plants, in the «full ripeness» phase, ear lengthening – 7,1 cm and an increase in the amount of grain in it – 29 pcs., an increase in the mass of 1000 grains – 45,0 and other quality indicators. On average, according to the experience, the maximum yield of winter wheat is formed due to the introduction of a dose of N90P90K60 mineral fertilizer, where it was 4,60 t /ha for Goryanka and 4,74 t /ha for Maykopchanka. According to the analysis of the grain (protein content, gluten) and flour quality (strength of flour, volumetric yield of bread) of the studied wheat varieties, higher indicators were obtained when using the dose of N90P90K60 mineral fertilizer. Despite the high yield on this option, from an economic point of view, the most effective one was the option with the introduction of N30P30K30 fertilizers. When comparing the most optimal options for the two varieties (application of a dose of N30P30K30 fertilizers), the production of the Maykopchanka variety was more efficient
Diagnosis and Treatment of Elderly and Senile Chronic Constipation: an Expert Consensus
Aim. An appraisal of practitioners with chronic constipation management details in older and senile adults.Key points. Chronic constipation is a common issue in geriatrics. Aside to age-related physiological bowel disfunction, a higher constipation incidence is conditioned by declined physical activity and frailty, polypharmacy and a series of secondary constipation-developing chronic states and diseases. Chronic constipation is associated with a higher risk of cardiovascular disease and complications, impaired general perception of health and pain, growing alarm and depression, and reduced quality of life. The treatment tactics in chronic constipation is cause-conditioned and should account for the patient’s history and therapy line, overall clinical condition, cognitive status and functional activity level. An essential baseline aspect of constipation management is apprising the patient and his family of the underlying factors and methods for non-drug and drug correction. An higher-fibre diet is recommended as first measure, with osmotic laxatives added and titrated to clinical response if none observed towards the non-drug and high-fibre regimens. Stimulant laxatives and prokinetics should be recommended in patients reluctant to fibre supplements and osmotic laxatives. Subsidiary correction includes biofeedback, transanal irrigation, acupuncture, foot reflexology and percutaneous tibial nerve stimulation.Conclusion. Elderly and senile chronic constipation is a prevalent multifactorial state requiring an efficient management via assessment and correction of total risk factors and consistent use of non-medication and drug therapies
ТРАНСПЛАНТАЦИЯ ПЕЧЕНИ У ДЕТЕЙ С БОЛЕЗНЯМИ НАКОПЛЕНИЯ ГЛИКОГЕНА: ОЦЕНКА РИСКА И НЕОБХОДИМОСТИ ЕЕ ПРОВЕДЕНИЯ
Glycogen storage diseases I, III and IV types are congenital disorders, which are commonly associated with severe liver diseases. Liver transplantation has been proposed as a treatment of choise for these disorders. While liver transplantation corrects the primary hepatic enzyme defect, the extrahepatic manifestations of glycogenoses often complicate the posttransplant management. Upon review of the English-language literature, 42 children under 18 years old were discovered to have undergone liver transplantation for complications associated with glycogenoses (18 patients with Ia type, 6 – with Ib type, one patient – with III type, 17 – with IV type). This artic- le represents the pediatric liver transplantation for complications associated with glycogenosis Ia type, analyzed posttransplant period in this recipient. Болезни накопления гликогена I, III, IV типа являются врожденными заболеваниями, которые обычно ведут к тяжелому поражению печени. Трансплантация печени является терапией выбора при данных патологиях. В то время как пересадка печени нивелирует первичный дефект фермента в печени, внепе- ченочные проявления гликогенозов порой осложняют посттрансплантационный период. В статье опи- саны данные англоязычной литературы, согласно которой 42 детям до 18 лет по поводу осложнений гликогенозов были проведены трансплантации печени (18 пациентам – в связи с гликогенозом Ia типа, шестерым – Ib, одному ребенку – III типа, 17 пациентам – по поводу гликогеноза IV типа). В работе представлено описание трансплантации печени ребенку по поводу гликогеноза Ia типа, проведен анализ посттрансплантационного периода жизни реципиента.
Optimizing Provider Recruitment for Influenza Surveillance Networks
The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-based networks. Using past surveillance and Internet search data, it determines the precise locations where providers should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks designed by conventional methods and a recently published algorithm based on maximizing population coverage. We show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not replace traditional surveillance methods
Difficulties in diagnosing intestinal T-cell lymphoma. Case report
The article describes a rare diagnosis of monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), due to its veiled by a number of so-called masks of enteropathies. A detailed analysis of all clinical, morphological and immunohistochemical data made it possible to establish the correct diagnosis. The revealed pathology is extremely rare in practice, even among specialists in hematology. The article demonstrates the main stages of both a complex diagnosis and an attempt at therapy for this aggressive form of intestinal lymphoma
Evidence for Escherichia coli DcuD carrier dependent FOF1-ATPase activity during fermentation of glycerol
During fermentation Escherichia coli excrete succinate mainly via Dcu family carriers. Current work
reveals the total and N,N’-dicyclohexylcarbodiimide (DCCD) inhibited ATPase activity at pH 7.5 and 5.5
in E. coli wild type and dcu mutants upon glycerol fermentation. The overall ATPase activity was highest
at pH 7.5 in dcuABCD mutant. In wild type cells 50% of the activity came from the FOF1-ATPase but in
dcuD mutant it reached ~80%. K+ (100 mM) stimulate total but not DCCD inhibited ATPase activity 40%
and 20% in wild type and dcuD mutant, respectively. 90% of overall ATPase activity was inhibited by
DCCD at pH 5.5 only in dcuABC mutant. At pH 7.5 the H+ fluxes in E. coli wild type, dcuD and dcuABCD
mutants was similar but in dcuABC triple mutant the H+ flux decreased 1.4 fold reaching 1.15 mM/min
when glycerol was supplemented. In succinate assays the H+ flux was higher in the strains where DcuD
is absent. No significant differences were determined in wild type and mutants specific growth rate
except dcuD strain. Taken together it is suggested that during glycerol fermentation DcuD has impact
on H+ fluxes, FOF1-ATPase activity and depends on potassium ions
Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway
[EN] Myogenic regeneration occurs through a chain of events beginning with the output of satellite cells from quiescent state, formation of competent myoblasts and later fusion and differentiation into myofibres. Traditionally, growth factors are used to stimulate muscle regeneration but this involves serious off-target effects, including alterations in cell homeostasis and cancer. In this work, we have studied the use of zinc to trigger myogenic differentiation. We show that zinc promotes myoblast proliferation, differentiation and maturation of myofibres. We demonstrate that this process occurs through the PI3K/Akt pathway, via zinc stimulation of transporter Zip7. Depletion of zinc transporter Zip7 by RNA interference shows reduction of both PI3K/Akt signalling and a significant reduction of multinucleated myofibres and myotubes development. Moreover, we show that mature myofibres, obtained through stimulation with high concentrations of zinc, accumulate zinc and so we hypothesise their function as zinc reservoirs into the cell.P.R. and R.S. acknowledges support from the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2015-69315-C3-1-R). P.R. acknowledges the Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. R.S. acknowledges the support from the Spanish MECD through the PRX16/00208 grant. MSS acknowledges support from the European Research Council (ERC - HealInSynergy 306990) and the UK Engineering and Physical Sciences Research Council (EPSRC - EP/P001114/1)Mnatsakanyan, H.; Sabater I Serra, R.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2018). Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Scientific Reports. 8:1-14. https://doi.org/10.1038/s41598-018-32067-0S1148Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015).Wolfe, R. R., Frontera, W. R. & Ochala, J. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 84, 475–82 (2006).Sciorati, C., Rigamonti, E., Manfredi, A. A. & Rovere-Querini, P. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23, 927–937 (2016).Wang, Y. X. & Rudnicki, M. A. Satellite cells, the engines of muscle repair. Nat. Rev. Mol. Cell Biol. 13, 127–133 (2011).Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).Dhawan, J. & Rando, T. A. Stem cells in postnatal myogenesis: Molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666–673 (2005).Yun, K. & Wold, B. Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8, 877–889 (1996).Gharaibeh, B. et al. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res. Part C Embryo Today Rev. 96, 82–94 (2012).Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 23, 160–70 (2008).Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo 23, 779–96 (2009).Fujio, Y. et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol. Cell. Biol. 19, 5073–82 (1999).Wilson, E. M. & Rotwein, P. Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J. Biol. Chem. 281, 29962–29971 (2006).Sun, L., Liu, L., Yang, X. & Wu, Z. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J. Cell Sci. 117, 3021–3029 (2004).Milner, D. & Cameron, J. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr. Top. Microbiol. Immunol. 367, 133–159 (2013).Liu, C. et al. PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin 42, 396–402 (2010).Eriksson, M., Taskinen, M. & Leppä, S. Mitogen Activated Protein Kinase-Dependent Activation of c-Jun and c-Fos is required for Neuronal differentiation but not for Growth and Stress Reposne in PC12 cells. J. Cell. Physiol. 207, 12–22 (2006).Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Mol. Ther. 10, 844–854 (2004).Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107, 3287–3292 (2010).Hanft, J. R. et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J. Wound Care 17(30–2), 34–7 (2008).Simón-Yarza, T. et al. Vascular endothelial growth factor-delivery systems for cardiac repair: An overview. Theranostics 2, 541–552 (2012).Briquez, P. S., Hubbell, J. A. & Martino, M. M. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv. Wound Care 4, 479–489 (2015).Barthel, A., Ostrakhovitch, E. A., Walter, P. L., Kampkötter, A. & Klotz, L. O. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: Mechanisms and consequences. Arch. Biochem. Biophys. 463, 175–182 (2007).Ostrakhovitch, E. A., Lordnejad, M. R., Schliess, F., Sies, H. & Klotz, L.-O. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys. 397, 232–239 (2002).Kaur, K., Gupta, R., Saraf, S. A. & Saraf, S. K. Zinc: The metal of life. Compr. Rev. Food Sci. Food Saf. 13, 358–376 (2014).Coleman, J. E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946 (1992).Fukada, T. & Kambe, T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3, 662–674 (2011).Murakami, M. & Hirano, T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 1515–1522 (2008).Hogstrand, C., Kille, P., Nicholson, R. I. & Taylor, K. M. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 15, 101–111 (2009).Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 10, 219–26 (2013).Myers, S. A., Nield, A., Chew, G. S. & Myers, M. A. The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. Plos One 8 (2013).Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95, 749–784 (2015).Jinno, N., Nagata, M. & Takahashi, T. Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol. Trace Elem. Res. 158, 65–72 (2014).Taylor, K. M., Hiscox, S., Nicholson, R. I., Hogstrand, C. & Kille, P. Protein Kinase CK2 Triggers Cytosolic Zinc Signaling Pathways by Phosphorylation of Zinc Channel ZIP7. Sci. Signal. 5, ra11–ra11 (2012).Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–45 (2007).Sumitani, S., Goya, K., Testa, J. R., Kouhara, H. & Kasayama, S. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143, 820–828 (2002).Ohashi, K. et al. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp. Cell Res. 333, 228–237 (2015).Chesters, J. K. In Zinc in human biology 53, 109–118 (1989).Burattini, S. et al. C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem. 48, 223–233 (2004).Mnatsakanyan, H. et al. Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Appl. Mater. Interfaces 7, 18125–18135 (2015).Jeong, J. & Eide, D. J. The SLC39 family of zinc transporters. Molecular Aspects of Medicine 34, 612–619 (2013).Huang, L., Kirschke, C. P., Zhang, Y. & Yan, Y. Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280, 15456–15463 (2005).Vallee, B. L. & Falchuk, K. H. The biochemical basis of zinc physiology. Physiological reviews 73 (1993).Ganju, N. & Eastman, A. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ. 10, 652–61 (2003).Chai, F., Truong-Tran, A. Q., Ho, L. H. & Zalewski, P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol. Cell Biol. 77, 272–278 (1999).Smith, P. J., Wiltshire, M., Furon, E., Beattie, J. H. & Errington, R. J. Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. Am. J. Physiol. Cell Physiol. 295, C1399–C1408 (2008).Bozym, R. A. et al. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood). 235, 741–50 (2010).Plum, L. M., Rink, L. & Hajo, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 7, 1342–1365 (2010).Chen, C.-J. & Liao, S.-L. Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation. J. Neurochem. 85, 443–453 (2003).Chassot, A. A. et al. Confluence-induced cell cycle exit involves pre-mitotic CDK inhibition by p27Kip1 and cyclin D1 downregulation. Cell Cycle 7, 2038–2046 (2008).Spencer, S. L. et al. XThe proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013).Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7, 597–602 (1997).Puri, P. L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. Journal of Cellular Physiology 185, 155–173 (2000).Zammit, P. S., Partridge, T. A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54, 1177–1191 (2006).McCord, M. C. & Aizenman, E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front. Aging Neurosci. 6, 1–16 (2014).Dirksen, R. T. Sarcoplasmic reticulum–mitochondrial through-space coupling in skeletal muscle. This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic. Appl. Physiol. Nutr. Metab. 34, 389–395 (2009).Groth, C., Sasamura, T., Khanna, M. R., Whitley, M. & Fortini, M. E. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development 140, 3018–3027 (2013).Ellis, C. D. et al. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166, 325–335 (2004).Koch, U., Lehal, R. & Radtke, F. Stem cells living with a Notch. Development 140, 689–704 (2013).Gardner, S., Anguiano, M. & Rotwein, P. Defining Akt actions in muscle differentiation. Am. J. Physiol. Physiol. 303, C1292–C1300 (2012).Knight, J. D. & Kothary, R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet. Muscle 1, 29 (2011).Roth, S. M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 1, 1–7 (2012).Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle 8, 1168–1175 (2009)
Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia
Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia
Mitochondrial ATP synthase: architecture, function and pathology
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions
- …