4,138 research outputs found
Entanglement versus Bell violations and their behaviour under local filtering operations
We discuss the relations between the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for systems of two qubits on the one side and entanglement of formation, local filtering operations, and the entropy and purity on the other. We calculate the extremal Bell violations for a given amount of entanglement of formation and characterize the respective states, which turn out to have extremal properties also with respect to the entropy, purity, and several entanglement monotones. The optimal local filtering operations leading to the maximal Bell violation for a given state are provided, and the special role of the resulting Bell diagonal states in the context of Bell inequalities is discussed
The importance of endpoint selection: how effective does a drug need to be for success in a clinical trial of a possible Alzheimer's disease treatment?
To date, Alzheimer's disease (AD) clinical trials have been largely unsuccessful. Failures have been attributed to a number of factors including ineffective drugs, inadequate targets, and poor trial design, of which the choice of endpoint is crucial. Using data from the Alzheimer's Disease Neuroimaging Initiative, we have calculated the minimum detectable effect size (MDES) in change from baseline of a range of measures over time, and in different diagnostic groups along the AD development trajectory. The Functional Activities Questionnaire score had the smallest MDES for a single endpoint where an effect of 27% could be detected within 3Â years in participants with Late Mild Cognitive Impairment (LMCI) at baseline, closely followed by the Clinical Dementia Rating Sum of Boxes (CDRSB) score at 28% after 2Â years in the same group. Composite measures were even more successful than single endpoints with an MDES of 21% in 3Â years. Using alternative cognitive, imaging, functional, or composite endpoints, and recruiting patients that have LMCI could improve the success rate of AD clinical trials
An area law for entanglement from exponential decay of correlations
Area laws for entanglement in quantum many-body systems give useful
information about their low-temperature behaviour and are tightly connected to
the possibility of good numerical simulations. An intuition from quantum
many-body physics suggests that an area law should hold whenever there is
exponential decay of correlations in the system, a property found, for
instance, in non-critical phases of matter. However, the existence of quantum
data-hiding state--that is, states having very small correlations, yet a volume
scaling of entanglement--was believed to be a serious obstruction to such an
implication. Here we prove that notwithstanding the phenomenon of data hiding,
one-dimensional quantum many-body states satisfying exponential decay of
correlations always fulfil an area law. To obtain this result we combine
several recent advances in quantum information theory, thus showing the
usefulness of the field for addressing problems in other areas of physics.Comment: 8 pages, 3 figures. Short version of arXiv:1206.2947 Nature Physics
(2013
Extending quantum operations
For a given set of input-output pairs of quantum states or observables, we ask the question whether there exists a physically implementable transformation that maps each of the inputs to the corresponding output. The physical maps on quantum states are trace-preserving completely positive maps, but we also consider variants of these requirements. We generalize the definition of complete positivity to linear maps defined on arbitrary subspaces, then formulate this notion as a semidefinite program, and relate it by duality to approximative extensions of this map. This gives a characterization of the maps which can be approximated arbitrarily well as the restriction of a map that is completely positive on the whole algebra, also yielding the familiar extension theorems on operator spaces. For quantum channel extensions and extensions by probabilistic operations we obtain semidefinite characterizations, and we also elucidate the special case of Abelian inputs or outputs. Finally, revisiting a theorem by Alberti and Uhlmann, we provide simpler and more widely applicable conditions for certain extension problems on qubits, and by using a semidefinite programming formulation we exhibit counterexamples to seemingly reasonable but false generalizations of the Alberti-Uhlmann theorem. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755845
Recommended from our members
Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to study the electronic structure dynamics in BaFe2As2 around the high-symmetry points Γ and M. A global oscillation of the Fermi level at the frequency of the A1g(As) phonon mode is observed. It is argued that this behavior reflects a modulation of the effective chemical potential in the photoexcited surface region that arises from the high sensitivity of the band structure near the Fermi level to the A1g(As) phonon mode combined with a low electron diffusivity perpendicular to the layers. The results establish a novel way to tune the electronic properties of iron pnictides: coherent control of the effective chemical potential. The results further suggest that the equilibration time for the effective chemical potential needs to be considered in the ultrafast electronic structure dynamics of materials with weak interlayer coupling. © 2014 American Physical Society
How Children's Advocacy Centers law enforcement officers cope with work-related stress: impacts and approaches to self-care
Work-related stress has been identified as being harmful for law enforcement officers’ (LEOs) health. The absence of effective coping strategies exacerbates the negative psychophysiological impacts on health. The literature suggests that law enforcement employers and communities also feel the impact of stress among LEOs. This study addresses the gap in the current literature in terms of qualitative-based exploration of the personal and professional impacts of LEs working within Children's Advocacy Centers (CACs) and self-care and stress alleviation practices in response to environmental stressors. CAC LEOs’ responses to three open-ended responses were analyzed from a national survey in the United States. Thematic analysis was utilised to identify emerging themes in relation to the: (1) personal, (2) professional impacts of work-related stress, and (3) the self-care or stress alleviation strategies adopted by LEOs. LEOs face multiple personal and professional stressors that impact their coping behaviours and health outcomes. Variation exists among LEOs in terms of coping behaviours and requires further investigation. This study highlights several gaps in the literature, including the personal and professional impacts of work-related stress among LEOs and the subsequent coping strategies adopted by LEOs in response to stressful working environments. Future research should further explore the impacts of work-related stress, coping strategies, and the development of effective stress prevention reduction approaches for this population
A generalization of the Entropy Power Inequality to Bosonic Quantum Systems
In most communication schemes information is transmitted via travelling modes
of electromagnetic radiation. These modes are unavoidably subject to
environmental noise along any physical transmission medium and the quality of
the communication channel strongly depends on the minimum noise achievable at
the output. For classical signals such noise can be rigorously quantified in
terms of the associated Shannon entropy and it is subject to a fundamental
lower bound called entropy power inequality. Electromagnetic fields are however
quantum mechanical systems and then, especially in low intensity signals, the
quantum nature of the information carrier cannot be neglected and many
important results derived within classical information theory require
non-trivial extensions to the quantum regime. Here we prove one possible
generalization of the Entropy Power Inequality to quantum bosonic systems. The
impact of this inequality in quantum information theory is potentially large
and some relevant implications are considered in this work
Size-driven quantum phase transitions
Can the properties of the thermodynamic limit of a many-body quantum system be extrapolated by analyzing a sequence of finite-size cases? We present models for which such an approach gives completely misleading results: translationally invariant, local Hamiltonians on a square lattice with open boundary conditions and constant spectral gap, which have a classical product ground state for all system sizes smaller than a particular threshold size, but a ground state with topological degeneracy for all system sizes larger than this threshold. Starting from a minimal case with spins of dimension 6 and threshold lattice size 15Ă—1515Ă—15, we show that the latter grows faster than any computable function with increasing local spin dimension. The resulting effect may be viewed as a unique type of quantum phase transition that is driven by the size of the system rather than by an external field or coupling strength. We prove that the construction is thermally robust, showing that these effects are in principle accessible to experimental observation
Gaussian bosonic synergy: quantum communication via realistic channels of zero quantum capacity
As with classical information, error-correcting codes enable reliable
transmission of quantum information through noisy or lossy channels. In
contrast to the classical theory, imperfect quantum channels exhibit a strong
kind of synergy: there exist pairs of discrete memoryless quantum channels,
each of zero quantum capacity, which acquire positive quantum capacity when
used together. Here we show that this "superactivation" phenomenon also occurs
in the more realistic setting of optical channels with attenuation and Gaussian
noise. This paves the way for its experimental realization and application in
real-world communications systems.Comment: 5 pages, 4 figures, one appendi
Continuous variable quantum key distribution with two-mode squeezed states
Quantum key distribution (QKD) enables two remote parties to grow a shared
key which they can use for unconditionally secure communication [1]. The
applicable distance of a QKD protocol depends on the loss and the excess noise
of the connecting quantum channel [2-10]. Several QKD schemes based on coherent
states and continuous variable (CV) measurements are resilient to high loss in
the channel, but strongly affected by small amounts of channel excess noise
[2-6]. Here we propose and experimentally address a CV QKD protocol which uses
fragile squeezed states combined with a large coherent modulation to greatly
enhance the robustness to channel noise. As a proof of principle we
experimentally demonstrate that the resulting QKD protocol can tolerate more
noise than the benchmark set by the ideal CV coherent state protocol. Our
scheme represents a very promising avenue for extending the distance for which
secure communication is possible.Comment: 8 pages, 5 figure
- …