99 research outputs found

    Topographical characterization of the ubiquinone reduction site of glucose dehydrogenase in Escherichia coli using depth-dependent fluorescent inhibitors

    Get PDF
    AbstractMembrane-bound glucose dehydrogenase in Escherichia coli possesses a binding site for ubiquinone as well as glucose, metal ion and pyrroloquinoline quinone. To probe the depth of the ubiquinone binding site in the membrane environment, we synthesized two types of fluorenyl fatty acids which bear an inhibitor mimic moiety (i.e., specific inhibitor capsaicin) close to the fluorene located at different positions in the alkyl tail chain; one close to the polar carbonyl head group (α-(3,4-dimethoxyphenyl)acetyloxy-7-nonyl-2-fluoreneacetic acid, α-DFA), and the other in the middle of the chain (θ-(3,4-dimethoxyphenyl)acetyloxy-7-ethyl-2-fluorenenonanoic acid, θ-DFA). Mixed lipid vesicles consisting of phosphatidylcholine (PC) and α-DFA or θ-DFA were prepared by sonication method, and fluorescent quenching against a hydrophilic quencher, iodide anion, was examined. The vesicles containing α-DFA were more susceptible to quenching than those containing θ-DFA, indicating that the fluorene and consequently capsaicin mimic moiety are located at different depths in the lipid bilayer depending upon the position of attachment to the alkyl tail chain. The purified glucose dehydrogenase was reconstituted into PC vesicles which consisted of PC and α-DFA or θ-DFA with various molar ratios. For both types of reconstituted vesicles, the extent of inhibition of short-chain ubiquinone reduction activity increased with increases in the molar ratio of fluorenyl fatty acid to PC. The ubiquinone reduction activity was more significantly inhibited in the reconstituted vesicles containing α-DFA compared to those containing θ-DFA. Our findings strongly suggested that the ubiquinone reduction site in glucose dehydrogenase is located close to the membrane surface rather than in the hydrophobic membrane interior

    Hybrid ubiquinone: novel inhibitor of mitochondrial complex I

    Get PDF
    AbstractWe synthesized novel ubiquinone analogs by hybridizing the natural ubiquinone ring (2,3-dimethoxy-5-methyl-1,4-benzoquinone) and hydrophobic phenoxybenzamide unit, and named them hybrid ubiquinones (HUs). The HUs worked as electron transfer substrates with bovine heart mitochondrial succinate–ubiquinone oxidoreductase (complex II) and ubiquinol–cytochrome c oxidoreductase (complex III), but not with NADH–ubiquinone oxidoreductase (complex I). With complex I, they acted as inhibitors in a noncompetitive manner against exogenous short-chain ubiquinones irrespective of the presence of the natural ubiquinone ring. Elongation of the distance between the ubiquinone ring and the phenoxybenzamide unit did not recover the electron accepting activity. The structure/activity study showed that high structural specificity of the phenoxybenzamide moiety is required to act as a potent inhibitor of complex I. These findings indicate that binding of the HUs to complex I is mainly decided by some specific interaction of the phenoxybenzamide moiety with the enzyme. It is of interest that an analogous bulky and hydrophobic substructure can be commonly found in recently registered synthetic pesticides the action site of which is mitochondrial complex I

    A model of antimycin A binding based on structure-activity studies of synthetic antimycin A analogues

    Get PDF
    AbstractThe structural factors of antimycin A molecule required for inhibitory action were studied using newly synthesized antimycin A derivatives with bovine heart submitochondrial particles, in order to probe the interaction between antimycin A and its binding site. In particular, we focused upon the roles of the amide bond bridge, which connects the salicylic acid and dilactone ring moieties, and the 3-formylamino group in the salicylic acid moiety. The lack of formation of an intramolecular hydrogen-bond between phenolic OH and amide carbonyl groups resulted in a remarkable loss of the activity (by four orders of magnitude), indicating that this hydrogen-bond is essential for the inhibition. This result suggested that both the phenolic OH and the carbonyl groups form a hydrogen-bond with some residues at a fixed conformation. In addition, the inhibitory potency was remarkably decreased by N-methylation of the amide bond moiety, indicating that the NH group might function in hydrogen-bond interaction with the binding site. The N-methylation of 3-formylamino group also resulted in a decrease in the activity, probably due to a loss of the rotational freedom of this functional group. Molecular orbital calculation studies with respect to the conformation of the 3-formylamino group indicated that this group takes an active conformation when the formyl carbonyl projects to the opposite side of the phenolic OH group. Based upon a series of structure-activity studies of synthetic antimycin A analogues, we propose a tentative model for antimycin A binding in its binding cavity

    Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones

    Get PDF
    NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane

    Identification of amino acid residues of mammalian mitochondrial phosphate carrier important for its functional expression in yeast cells, as achieved by PCR-mediated random mutation and gap-repair cloning

    Get PDF
    The mitochondrial phosphate carrier (PiC) of mammals, but not the yeast one, is synthesized with a presequence. The deletion of this presequence of the mammalian PiC was reported to facilitate the import of the carrier into yeast mitochondria, but the question as to whether or not mammalian PiC could be functionally expressed in yeast mitochondria was not addressed. In the present study, we first examined whether the defective growth on a glycerol plate of yeast cells lacking the yeast PiC gene could be reversed by the introduction of expression vectors of rat PiCs. The introduction of expression vectors encoding full-length rat PiC (rPiC) or rPiC lacking the presequence (ΔNrPiC) was ineffective in restoring growth on the glycerol plates. When we examined the expression levels of individual rPiCs in yeast mitochondria, ΔNrPiC was expressed at a level similar to that of yeast PiC, but that of rPiC was very low. These results indicated that ΔNrPiC expressed in yeast mitochondria is inert. Next, we sought to isolate “revertants” viable on the glycerol plate by expressing randomly mutated ΔNrPiC, and obtained two clones. These clones carried either of two mutations, F267S or F282S; and these mutations restored the transport function of ΔNrPiC in yeast mitochondria. These two Phe residues were conserved in human carrier (hPiC), and the transport function of ΔNhPiC expressed in yeast mitochondria was also markedly improved by their substitutions. Thus, substitution of F267S or F282S was concluded to be important for functional expression of mammalian PiCs in yeast mitochondria

    Insect Adenine Nucleotide Translocases

    Get PDF
    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4

    Health Related Quality of Life in Japanese Patients with Localized Prostate Cancer: Comparative Retrospective Study of Robot-Assisted Laparoscopic Radical Prostatectomy Versus Radiation Therapy

    Get PDF
    Background: Radical prostatectomy and radiotherapy are standard treatments for localized prostate cancer. When making decisions about treatment, it is important to not only consider medical information such as the patient’s age, performance status, and complications, but also the impact on quality of life (QOL) after treatment. Our purpose was to compare health related quality of life (HRQOL) after robot-assisted laparoscopic radical prostatectomy (RARP) versus radiation therapy in Japanese patients with localized prostate cancer retrospectively. Methods: Patients with localized prostate cancer receiving RARP or radiotherapy at Tottori University Hospital between October 2010 and December 2014 were enrolled in a retrospective observational study with follow-up for 24 months to December 2016. The Medical Outcome Study 8-Item Short-Form Health Survey was performed before treatment and 1, 3, 6, 12, and 24 months post-treatment. Results: Complete responses to the questionnaire were obtained from 154/227 patients receiving RARP, 41/67 patients receiving intensity-modulated radiation therapy, 35/82 patients receiving low dose rate brachytherapy, and 18/28 patients given low dose rate brachytherapy plus external beam radiation therapy. The median physical component summary score of the Medical Outcome Study 8-Item Short-Form Health Survey was significantly lower at 1 month after prostatectomy than radiotherapy, but was similar for both treatments at 3 months, and was significantly higher at 6, 12 and 24 months after prostatectomy. The median mental component summary score was also significantly lower in the prostatectomy group at 1 month, but not from 3 months onwards. Conclusion: Our study suggested that HRQOL was inferior at 1 month after RARP, however, recovered at 3 months after RARP and was better than after radiotherapy at 6, 12, and 24 months

    Diverse reaction behaviors of artificial ubiquinones in mitochondrial respiratory complex I

    Get PDF
    The ubiquinone (UQ) reduction step catalyzed by NADH-UQ oxidoreductase (mitochondrial respiratory complex I) is key to triggering proton translocation across the inner mitochondrial membrane. Structural studies have identified a long, narrow, UQ-accessing tunnel within the enzyme. We previously demonstrated that synthetic oversized UQs, which are unlikely to transit this narrow tunnel, are catalytically reduced by native complex I embedded in submitochondrial particles but not by the isolated enzyme. To explain this contradiction, we hypothesized that access of oversized UQs to the reaction site is obstructed in the isolated enzyme because their access route is altered following detergent solubilization from the inner mitochondrial membrane. In the present study, we investigated this using two pairs of photoreactive UQs (pUQ(m-1)/pUQ(p-1) and pUQ(m-2)/pUQ(p-2)), with each pair having the same chemical properties except for a similar to 1.0 angstrom difference in side-chain widths. Despite this subtle difference, reduction of the wider pUQs by the isolated complex was significantly slower than of the narrower pUQs, but both were similarly reduced by the native enzyme. In addition, photoaffinity-labeling experiments using the four [I-125]pUQs demonstrated that their side chains predominantly label the ND1 subunit with both enzymes but at different regions around the tunnel. Finally, we show that the suppressive effects of different types of inhibitors on the labeling significantly changed depending on [I-125]pUQs used, indicating that [I-125]pUQs and these inhibitors do not necessarily share a common binding cavity. Altogether, we conclude that the reaction behaviors of pUQs cannot be simply explained by the canonical UQ tunnel model.Peer reviewe

    Inhibitors of a Na⁺-pumping NADH-ubiquinone oxidoreductase play multiple roles to block enzyme function

    Get PDF
    The Na⁺-pumping NADH-ubiquinone (UQ) oxidoreductase (Na⁺-NQR) is present in the respiratory chain of many pathogenic bacteria and is thought to be a promising antibiotic target. Whereas many details of Na⁺-NQR structure and function are known, the mechanisms of action of potent inhibitors is not well-understood; elucidating the mechanisms would not only advance drug design strategies but might also provide insights on a terminal electron transfer from riboflavin to UQ. To this end, we performed photoaffinity labeling experiments using photoreactive derivatives of two known inhibitors, aurachin and korormicin, on isolated Vibrio cholerae Na⁺-NQR. The inhibitors labeled the cytoplasmic surface domain of the NqrB subunit including a protruding N-terminal stretch, which may be critical to regulate the UQ reaction in the adjacent NqrA subunit. The labeling was blocked by short-chain UQs such as ubiquinone-2. The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp49 and Asp52 (to Ala), and observed moderate decreases in labeling yields, suggesting that these residues are involved in the interaction with ACT. We conclude that the inhibitors interfere with the UQ reaction in two ways: the first is blocking structural rearrangements at the cytoplasmic interface between NqrA and NqrB, and the second is the direct obstruction of UQ binding at this interfacial area. Unusual competitive behavior between the photoreactive inhibitors and various competitors corroborates our previous proposition that there may be two inhibitor binding sites in Na⁺-NQR
    corecore