7,324 research outputs found

    Mechanically-Induced Transport Switching Effect in Graphene-based Nanojunctions

    Get PDF
    We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction struc- tures which have alternative metastable configurations transformed by rotations of local carbon dimers. The use of external mechanical strain allows a control of the energy barrier heights of the potential profiles and also changes the reaction character from endothermic to exothermic or vice-versa. The reshaping of the atomic details of the junction encode binary electronic ON or OFF states, with ON/OFF transmission ratio that can reach up to 10^4-10^5. Our results suggest the possibility to design modern logical switching devices or mechanophore sensors, monitored by mechanical strain and structural rearrangements.Comment: 10 pages, 4 figure

    Z-graded weak modules and regularity

    Full text link
    It is proved that if any Z-graded weak module for vertex operator algebra V is completely reducible, then V is rational and C_2-cofinite. That is, V is regular. This gives a natural characterization of regular vertex operator algebras.Comment: 9 page

    C2C_2-cofiniteness of 2-cyclic permutation orbifold models

    Full text link
    In this article, we consider permutation orbifold models of C2C_2-cofinite vertex operator algebras of CFT type. We show the C2C_2-cofiniteness of the 2-cyclic permutation orbifold model (V⊗V)S2(V\otimes V)^{S_2} for an arbitrary C2C_2-cofinite simple vertex operator algebra VV of CFT type. We also give a proof of the C2C_2-cofiniteness of a Z2\Z_2-orbifold model VL+V_L^+ of the lattice vertex operator algebra VLV_L associated with a rank one positive definite even lattice LL by using our result and the C2C_2-cofiniteness of VLV_L.Comment: 25 pages, no figure, some typo are correcte

    Cheon's anholonomies in Floquet operators

    Full text link
    Anholonomies in the parametric dependences of the eigenvalues and the eigenvectors of Floquet operators that describe unit time evolutions of periodically driven systems, e.g., kicked rotors, are studied. First, an example of the anholonomies induced by a periodically pulsed rank-1 perturbation is given. As a function of the strength of the perturbation, the perturbed Floquet operator of the quantum map and its spectrum are shown to have a period. However, we show examples where each eigenvalue does not obey the periodicity of the perturbed Floquet operator and exhibits an anholonomy. Furthermore, this induces another anholonomy in the eigenspaces, i.e., the directions of the eigenvectors, of the Floquet operator. These two anholonomies are previously observed in a family of Hamiltonians [T. Cheon, Phys. Lett. A 248, 285 (1998)] and are different from the phase anholonomy known as geometric phases. Second, the stability of Cheon's anholonomies in periodically driven systems is established by a geometrical analysis of the family of Floquet operators. Accordingly, Cheon's anholonomies are expected to be abundant in systems whose time evolutions are described by Floquet operators. As an application, a design principle for quantum state manipulations along adiabatic passages is explained

    The Mass of the Milky Way: Limits from a Newly Assembled Set of Halo Objects

    Full text link
    We set new limits on the mass of the Milky Way, making use of the latest kinematic information for Galactic satellites and halo objects. In order to bind these sample objects to the Galaxy, their rest-frame velocities must be lower than their escape velocities at their estimated distances. This constraint enables us to show that the mass estimate of the Galaxy is largely affected by several high-velocity objects (Leo I, Pal 3, Draco, and a few FHB stars), not by a single object alone (such as Leo I), as has often been the case in past analyses. We also find that a gravitational potential that gives rise to a declining rotation curve is insufficient to bind many of our sample objects to the Galaxy; a possible lower limit on the mass of the Galaxy is about 2.2 x 10^12 Msolar. To be more quantitative, we adopt a Bayesian likelihood approach to reproduce the observed distribution of the current positions and motions of the sample, in a prescribed Galactic potential that yields a flat rotation curve. This method enables a search for the most likely total mass of the Galaxy, without undue influence in the final result arising from the presence or absence of Leo I, provided that both radial velocities and proper motions are used. The most likely total mass derived from this method is 2.5^+0.5_-1.0 x 10^12 Msolar (including Leo I), and 1.8^+0.4_-0.7 x 10^12 Msolar (excluding Leo I).Comment: 14 pages, including 9 figures and 3 tables, accepted for publication in Astronomy and Astrophysic

    Interplay Between Chaotic and Regular Motion in a Time-Dependent Barred Galaxy Model

    Full text link
    We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar's mass leads to an increase of the system's chaoticity. We propose a new way of using the Generalized Alignment Index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic vs. regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems.Comment: 21 pages, 9 figures (minor typos fixed) to appear in J. Phys. A: Math. Theo

    Lifshitz transition and van Hove singularity in a Topological Dirac Semimetal

    Full text link
    A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semimetal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetal's topological groundstate.Comment: 5 pages, 4 Figures, Related papers on topological Fermi arcs and Weyl Semimetals (WSMs) are at http://physics.princeton.edu/zahidhasangroup/index.htm

    Global monopole solutions in Horava gravity

    Full text link
    In Horava's theory of gravity coupled to a global monopole source, we seek for static, spherically symmetric spacetime solutions for general values of λ\lambda. We obtain the explicit solutions with deficit solid angles, in the IR modified Horava gravity model, at the IR fixed point λ=1\lambda=1 and at the conformal point λ=1/3\lambda=1/3. For the other values of 1>λ>01>\lambda>0 we also find special solutions to the inhomogenous equation of the gravity model with detailed balance, and we discuss an possibility of astrophysical applications of the λ=1/2\lambda=1/2 solution that has a deficit angle for a finite range.Comment: 7 pages, added reference
    • …
    corecore