1,548 research outputs found

    Peierls instability, periodic Bose-Einstein condensates and density waves in quasi-one-dimensional boson-fermion mixtures of atomic gases

    Full text link
    We study the quasi-one-dimensional (Q1D) spin-polarized bose-fermi mixture of atomic gases at zero temperature. Bosonic excitation spectra are calculated in random phase approximation on the ground state with the uniform BEC, and the Peierls instabilities are shown to appear in bosonic collective excitation modes with wave-number 2kF2k_F by the coupling between the Bogoliubov-phonon mode of bosonic atoms and the fermion particle-hole excitations. The ground-state properties are calculated in the variational method, and, corresponding to the Peierls instability, the state with a periodic BEC and fermionic density waves with the period π/kF\pi/k_F are shown to have a lower energy than the uniform one. We also briefly discuss the Q1D system confined in a harmonic oscillator (HO) potential and derive the Peierls instability condition for it.Comment: 9 pages, 3figure

    Probing the Phase Diagram of Bi2Sr2CaCu2O8+d with Tunneling Spectroscopy

    Get PDF
    Tunneling measurements are performed on Ca-rich single crystals of Bi2Sr2CaCu2O8+d (Bi2212), with various oxygen doping levels, using a novel point contact method. At 4.2 K, SIN and SIS tunnel junctions are obtained with well-defined quasiparticle peaks, robust dip and hump features and in some cases Josephson currents. The doping dependence of tunneling conductances of Ca-rich Bi2212 are analyzed and compared to stoichiometric Bi2212. A similar profile of energy gap vs. doping concentration is found although the Ca-rich samples have a slighly smaller optimum Tc and therefore smaller gap values for any doping level. The evolution of tunneling conductance peak height to background ratios with hole concentration are compared. For a given doping level, the Ca-rich spectra showed more broadened features compared to the stoichiometric counterparts, most likely due to increased disorder from the excess Ca. Comparison of the dip and hump features has provided some potential insights into their origins.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (August 4-9, 2002) in Houston, TX; to be published in IEEE Trans. Appl. Supercon

    Density wave instability in a 2D dipolar Fermi gas

    Get PDF
    We consider a uniform dipolar Fermi gas in two-dimensions (2D) where the dipole moments of fermions are aligned by an orientable external field. We obtain the ground state of the gas in Hartree-Fock approximation and investigate RPA stability against density fluctuations of finite momentum. It is shown that the density wave instability takes place in a broad region where the system is stable against collapse. We also find that the critical temperature can be a significant fraction of Fermi temperature for a realistic system of polar molecules.Comment: 10 figure

    Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Full text link
    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed.Comment: 15 pages, 2 figures, submitted to J. Phys.

    Single Junction and Intrinsic Josephson Junction Tunneling Spectroscopies of Bi2Sr2CaCu2O8+d

    Get PDF
    Tunneling spectroscopy measurements are reported on optimally-doped and overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals. A novel point contact method is used to obtain superconductor-insulator-normal metal (SIN) and SIS break junctions as well as intrinsic Josephson junctions (IJJ) from nanoscale crystals. Three junction types are obtained on the same crystal to compare the quasiparticle peaks and higher bias dip/hump structures which have also been found in other surface probes such as scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. However, our IJJ quasiparticle spectra consistently reveal very sharp conductance peaks and no higher bias dip structures. The IJJ conductance peak voltage divided by the number of junctions in the stack consistently leads to a significant underestimate of Δ\Delta when compared to the single junction values. The comparison of the three methods suggests that the markedly different characteristics of IJJ are a consequence of nonequilibrium effects and are not intrinsic quasiparticle features.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (October 3-8, 2004) in Jacksonville, FL; to be published in IEEE Trans. Appl. Supercon

    Achieving diffraction-limited performance on the Berkeley MET5

    Get PDF
    The Berkeley MET5, funded by EUREKA, is a 0.5-NA EUV projection lithography tool located at the Advanced Light Source at Berkeley National Lab. Wavefront measurements of the MET5 optic have been performed using a custom in-situ lateral shearing interferometer suitable for high-NA interferometry. In this paper, we report on the most recent characterization of the MET5 optic demonstrating an RMS wavefront 0.31 nm, and discuss the specialized mask patterns, gratings, and illumination geometries that were employed to accommodate the many challenges associated with high-NA EUV interferometry

    Collective excitations of a trapped boson-fermion mixture across demixing

    Full text link
    We calculate the spectrum of low-lying collective excitations in a mesoscopic cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas as a function of the boson-fermion repulsions. The cloud is under isotropic harmonic confinement and its dynamics is treated in the collisional regime by using the equations of generalized hydrodynamics with inclusion of surface effects. For large numbers of bosons we find that, as the cloud moves towards spatial separation (demixing) with increasing boson-fermion coupling, the frequencies of a set of collective modes show a softening followed by a sharp upturn. This behavior permits a clear identification of the quantum phase transition. We propose a physical interpretation for the dynamical transition point in a confined mixture, leading to a simple analytical expression for its location.Comment: revtex4, 9 pages, 8 postscript file

    Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture

    Full text link
    We compare the experimental stability diagram of a Fermi-Bose mixture of K-40 and Rb-87 atoms with attractive interaction to the predictions of a mean-field theoretical model. We discuss how this comparison can be used to give a better estimate of the interspecies scattering length, which is currently known from collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure
    corecore