Tunneling measurements are performed on Ca-rich single crystals of
Bi2Sr2CaCu2O8+d (Bi2212), with various oxygen doping levels, using a novel
point contact method. At 4.2 K, SIN and SIS tunnel junctions are obtained with
well-defined quasiparticle peaks, robust dip and hump features and in some
cases Josephson currents. The doping dependence of tunneling conductances of
Ca-rich Bi2212 are analyzed and compared to stoichiometric Bi2212. A similar
profile of energy gap vs. doping concentration is found although the Ca-rich
samples have a slighly smaller optimum Tc and therefore smaller gap values for
any doping level. The evolution of tunneling conductance peak height to
background ratios with hole concentration are compared. For a given doping
level, the Ca-rich spectra showed more broadened features compared to the
stoichiometric counterparts, most likely due to increased disorder from the
excess Ca. Comparison of the dip and hump features has provided some potential
insights into their origins.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity
Conference (August 4-9, 2002) in Houston, TX; to be published in IEEE Trans.
Appl. Supercon