200 research outputs found

    <i>WhatsApp</i> use among African international distance education (IDE) students: transferring, translating and transforming educational experiences

    Get PDF
    Much of the research on how social media is embedded into the educational practices of higher education students has a Western orientation. In concentrating on a case study of the varied ways in which African International Distance Education (IDE) students actively use social media to shape their learning experiences, we discuss an under-researched group. The paper draws on analysis of 1295 online questionnaires and 165 in-depth interviews with IDE students at UNISA, South Africa, one of the largest providers of IDE globally. WhatsApp emerges as ‘the’ key social media tool that opens up opportunities for IDE students to transfer, translate and transform their educational journey when studying ‘at a distance’. Although WhatsApp does provide a ‘space of opportunity’ for some students, this is framed through socio-technical marginalisation, itself a reflection of demographic legacies of inequality. Exploring social media practices though the case of African IDE students places these students centre stage and adds to the awareness of the multiple centres from which international education is practiced

    Overcoming cross-cultural group work tensions: mixed student perspectives on the role of social relationships

    Get PDF
    As universities worldwide rapidly internationalise, higher education classrooms have become unique spaces for collaboration between students from different countries. One common way to encourage collaboration between diverse peers is through group work. However, previous research has highlighted that cross-cultural group work can be challenging and has hinted at potential social tensions. To understand this notion better, we have used robust quantitative tools in this study to select 20 participants from a larger classroom of 860 students to take part in an in-depth qualitative interview about cross-cultural group work experiences. Participant views on social tensions in cross-cultural group work were elicited using a unique mediating artefact method to encourage reflection and in-depth discussion. In our analysis of emergent interview themes, we compared student perspectives on the role of social relationships in group work by their academic performance level. Our findings indicated that all students interviewed desired the opportunity to form social relationships with their group work members, but their motivations for doing so varied widely by academic performance level

    The use of open data as a material for learning

    Get PDF
    Open data has potential value as a material for use in learning activities. However, approaches to harnessing this are not well understood or in mainstream use in education. In this research, early adopters from a diverse range of educational projects and teaching settings were interviewed to explore their rationale for using open data in teaching, how suitable activity designs could be achieved, and the practical challenges of using open data. A thematic analysis was conducted to identify patterns and relationships in these open data-based practices that have already emerged. A document analysis of teaching materials and other related artefacts was used to augment and validate the findings. Drawing on this, common approaches and issues are identified, and a conceptual framework to support greater use of open data by educators is described. This paper also highlights where existing concepts in education and educational technology research, including inquiry-based learning, authenticity, motivation, dialogue, and personalisation can help us to understand the value and challenges of using open data in education

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    Get PDF
    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations

    GO-GN conceptual frameworks guide

    Get PDF
    This collaboratively written book brings together insights from a range of researchers into their use of conceptual frameworks in studying open education. Also included is an overview of different approaches to understanding the role(s) of theories and conceptual frameworks in doctoral research. In addition to discussing the different ways that conceptual frameworks are used we provide a (selective) overview of a range of conceptual frameworks and examples of their use. The GO-GN Conceptual Frameworks Guide is intended for those working in doctoral research but accessible enough to be used by anyone interested in carrying out a research project.Librar

    Mechanically assisted electrochemical degradation of alumina-TiC composites

    Get PDF
    Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment
    • …
    corecore