543 research outputs found

    Hippocampal Function and Gonadal Steroids

    Get PDF

    Hippocampal Theta Activity During Stimulus Discrimination Task

    Get PDF
    The configural association theory and conflict resolution model both propose that hippocampal function plays role in the solving a negative patterning task but not simple discrimination task. Some hippocampal lesion study showed that inactivity of rats’ hippocampal CA1 area induced impairment of performance of a negative patterning task. Other previous studies, however, showed that the lesion did not affect the performance of the task. Thus, it did not reveal whether hippocampal function was important for solving the negative patterning task. Our recent research using an electrophysiological approach showed that the hippocampal theta power decreased with a compound stimulus of a negative patterning task, and that the hippocampal theta power was decreased by a compound stimulus of a feature negative task. These results indicate that a decrease in hippocampal theta activity is elicited by behavioral inhibition for conflict stimuli with overlapping elements. This finding strongly supports the conflict resolution model and suggests a hippocampal role in learning behavioral inhibition for conflict stimuli during nonspatial stimulus discrimination tasks

    Recognition of Brain Wave Related to the Episode Memory by Deep Learning Methods

    Get PDF
    Hippocampus makes an important role of memory in the brain. In this chapter, a study of brain wave recognition using deep learning methods is introduced. The purpose of the study is to match the ripple-firings of the hippocampal activity to the episodic memories. In fact, brain spike signals of rats (300–10 kHz) were recorded and machine learning methods such as Convolutional Neural Networks (CNN), Support Vector Machine (SVM), a deep learning model VGG16, and combination models composed by CNN with SVM and VGG16 with SVM were adopted to be classifiers of the brain wave signals. Four kinds of episodic memories, that is, a male rat contacted with a female/male rat, contacted with a novel object, and an experience of restrain stress, were detected corresponding to the ripple waves of Multiple-Unit Activities (MUAs) of hippocampal CA1 neurons in male rats in the experiments. The experiment results showed the possibility of matching of ripple-like firing patterns of hippocampus to episodic memory activities of rats, and it suggests disorders of memory function may be found by the analysis of brain waves

    Study on Morphological Properties and Mass Transport Parameters of ORR in Recast Ion- exchange Polymer Electrolyte Membranes

    Get PDF
    ABSTRACT We have investigated the effect of the recast temperature, i.e., heat treatment of a polymer electrolyte, on the diffusion coefficient and solubility of oxygen in the electrolyte and also on the morphological properties of recast ion-exchange membranes for improving the cathode activity in PEFCs. The recast membranes were prepared at different recast temperatures from Nafion ® and Aciplex ® solutions. Based on the chronoamperometric measurements, it was found that the diffusion coefficient and solubility of oxygen were deeply affected by the recast temperature. The diffusion coefficient increased with the decreasing recast temperature while the solubility had the opposite tendency. The water uptakes and ionic cluster size also varied with the recast temperature. Based on the X-ray measurements, it is considered that the differences in the mass transport parameters, the cluster sizes and water uptakes are due to the growth of clusters and crystallinity in the electrolyte

    Plasma Free Amino Acid Profiling of Five Types of Cancer Patients and Its Application for Early Detection

    Get PDF
    BACKGROUND: Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection. METHODS AND FINDINGS: Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS). Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >0.75 for each cancer), regardless of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling. CONCLUSIONS: These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods

    Metastasis of Tumor Cells Is Enhanced by Downregulation of Bit1

    Get PDF
    Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription) protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk) levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1 expression in cancer cells to circumvent metastasis at least in part through inhibition of the Erk pathway
    corecore