83 research outputs found

    Impact of helical elongation of symmetric oxa[n]helicenes on their structural, photophysical, and chiroptical characteristics

    Get PDF
    Salem M.S.H., Sharma R., Suzuki S., et al. Impact of helical elongation of symmetric oxa[n]helicenes on their structural, photophysical, and chiroptical characteristics. Chirality 36, e23673 (2024); https://doi.org/10.1002/chir.23673.The adjustment of the main helical scaffold in helicenes is a fundamental strategy for modulating their optical features, thereby enhancing their potential for diverse applications. This work explores the influence of helical elongation (n = 5–9) on the structural, photophysical, and chiroptical features of symmetric oxa[n]helicenes. Crystal structure analyses revealed structural variations with helical extension, impacting torsion angles, helical pitch, and packing arrangements. Through theoretical investigations using density functional theory (DFT) calculations, the impact of helical extension on aromaticity, planarity distortion, and heightened chiral stability were discussed. Photophysical features were studied through spectrophotometric analysis, with insights gained through time-dependent DFT (TD-DFT) calculations. Following optical resolution via chiral high-performance liquid chromatography (HPLC), the chiroptical properties of both enantiomers of oxa[7]helicene and oxa[9]helicene were investigated. A slight variation in the main helical scaffold of oxa[n]helicenes from [7] to [9] induced an approximately three-fold increase in dissymmetry factors with the biggest values of|glum| of oxa[9]helicene (2.2 × 10−3) compared to|glum|of oxa[7]helicene (0.8 × 10−3), findings discussed and supported by TD-DFT calculations

    Carbon(sp2)-carbon(sp3) Bond-forming Cross-coupling Reactions Using Sulfur-Modified Au-Supported Nickel Nanoparticle Catalyst

    Full text link
    We report a carbon(sp2)-carbon(sp3) bond-forming cross-coupling reactions by employing a nano-size nickel catalyst supported on sulfur-modified gold (SANi). This transformation demonstrates an efficient synthesis of functionalized aryl compounds, including heterocycles. Notably, the reactions proceeded in good yields with significantly low leaching of nickel from SANi. Moreover, SANi could be recycled several times without significant loss of catalytic activity.This is the peer reviewed version of the following article: Ohta R., Shio Y., Akiyama T., et al. Carbon(sp2)-carbon(sp3) Bond-forming Cross-coupling Reactions Using Sulfur-Modified Au-Supported Nickel Nanoparticle Catalyst. Asian Journal of Organic Chemistry, which has been published in final form at https://doi.org/10.1002/ajoc.202200229. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited

    Tricarboxylic acid cycle activity suppresses acetylation of mitochondrial proteins during early embryonic development in Caenorhabditis elegans

    Get PDF
    The tricarboxylic acid (TCA) cycle (or citric acid cycle) is responsible for the complete oxidation of acetyl-CoA and formation of intermediates required for ATP production and other anabolic pathways, such as amino acid synthesis. Here, we uncovered an additional mechanism that may help explain the essential role of the TCA cycle in the early embryogenesis of Caenorhabditis elegans. We found that knockdown of citrate synthase (cts-1), the initial and rate-limiting enzyme of the TCA cycle, results in early embryonic arrest, but that this phenotype is not because of ATP and amino acid depletions. As a possible alternative mechanism explaining this developmental deficiency, we observed that cts-1 RNAi embryos had elevated levels of intracellular acetyl-CoA, the starting metabolite of the TCA cycle. Of note, we further discovered that these embryos exhibit hyperacetylation of mitochondrial proteins. We found that supplementation with acetylase-inhibiting polyamines, including spermidine and putrescine, counteracted the protein hyperacetylation and developmental arrest in the cts-1 RNAi embryos. Contrary to the hypothesis that spermidine acts as an acetyl sink for elevated acetyl-CoA, the levels of three forms of acetylspermidine, N1-acetylspermidine, N8-acetylspermidine, and N1,N8-diacetylspermidine, were not significantly increased in embryos treated with exogenous spermidine. Instead, we demonstrated that the mitochondrial deacetylase sirtuin 4 (encoded by the sir-2.2 gene) is required for spermidine\u27s suppression of protein hyperacetylation and developmental arrest in the cts-1 RNAi embryos. Taken together, these results suggest the possibility that during early embryogenesis, acetyl-CoA consumption by the TCA cycle in C. elegans prevents protein hyperacetylation and thereby protects mitochondrial function

    Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout

    Get PDF
    Objective The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. Methods We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). Results This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10– 8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three ‘gout vs AHUA GWAS’-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. Conclusions This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    Development of Metal Nanoparticle Catalysis toward Drug Discovery

    No full text

    Design and synthesis of the stabilized analogs of belactosin A with the unnatural cis-cyclopropane structure

    Get PDF
    The belactosin A analog 2a, having the unnatural cis-cyclopropane structure instead of the trans-cyclopropane structure in belactosin A, is a much more potent proteasome inhibitor than belactosin A. However, its cell growth inhibitory effect is rather lower than that expected from its remarkable proteasome inhibitory effect, probably due to its instability under cellular conditions. We hypothesized that the instability of 2a was due to chemical and enzymatic hydrolysis of the strained beta-lactone moiety. Thus, to increase the stability of 2a by chemical modification, its analogs with a sterically more hindered beta-lactone moiety and/or cyclopropylic strain-based conformational restriction were designed and synthesized, resulting in the identification of a stabilized analog 6a as a proteasome inhibitor with cell growth inhibitory effects. Our findings suggest that the chemical and biological stability of 2a is significantly affected by the steric hindrance around its beta-lactone carbonyl moiety and the conformational flexibility of the molecule

    Rational hopping of a peptidic scaffold into non-peptidic scaffolds: structurally novel potent proteasome inhibitors derived from a natural product, belactosin A

    Get PDF
    Rational scaffold hopping of a natural product belactosin A derivative was successfully achieved based on the pharmacophore model constructed. The peptidic scaffold was replaced by significantly simplified non- peptidic scaffolds, bywhich weak belactosin A (IC50= 1440nM) was converted into highly potent non- peptidic inhibitors (IC50 = 26-393 nM)

    Revisiting Chiral Recognition Mechanism on Chicken Alpha 1-Acid Glycoprotein: Location of Chiral Binding Sites and Insight into Chiral Binding Mechanism

    No full text
    Chiral stationary phases based on chicken alpha 1-acid glycoprotein (cAGP) have been used for enantioseparations of various compounds. However, the chiral binding sites and mechanism have not been clarified yet. Based on chromatographic properties of native and W26-modified cAGP columns and docking simulations of studied compounds into the generated model structure of cAGP, the chiral binding sites were located on cAGP and the chiral binding mechanism was discussed. On cAGP, there existed a binding cavity lined with H25, W26, Y47, R128, T129, D161 and E168, which contribute electrostatic or hydrogen bonding interactions. Benzoin and chlorpheniramine enantiomers interacted with cAGP at almost the same sites a little away from W26, while propranolol enantiomers docked, slightly shifting toward H25 and W26. Furthermore, in addition to hydrophobic interactions, ionic interactions between amino groups of chlorpheniramine enantiomers and a carboxyl group of D161 or E168 played an important role in the chiral recognition, while hydrophobic interactions and hydrogen bonding interactions worked for the chiral recognition of benzoin and propranolol enantiomers

    DFT Studies of S-Modified Au-Supported Pd with Hydroxyl Group

    No full text
    corecore