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Abstract

The adjustment of the main helical scaffold in helicenes is a fundamental strat-

egy for modulating their optical features, thereby enhancing their potential for

diverse applications. This work explores the influence of helical elongation

(n = 5–9) on the structural, photophysical, and chiroptical features of symmet-

ric oxa[n]helicenes. Crystal structure analyses revealed structural variations

with helical extension, impacting torsion angles, helical pitch, and packing

arrangements. Through theoretical investigations using density functional the-

ory (DFT) calculations, the impact of helical extension on aromaticity, planar-

ity distortion, and heightened chiral stability were discussed. Photophysical

features were studied through spectrophotometric analysis, with insights

gained through time-dependent DFT (TD-DFT) calculations. Following optical

resolution via chiral high-performance liquid chromatography (HPLC), the

chiroptical properties of both enantiomers of oxa[7]helicene and oxa[9]heli-

cene were investigated. A slight variation in the main helical scaffold of oxa[n]

helicenes from [7] to [9] induced an approximately three-fold increase in dis-

symmetry factors with the biggest values ofjglumj of oxa[9]helicene (2.2 � 10�3)

compared tojglumjof oxa[7]helicene (0.8 � 10�3), findings discussed and sup-

ported by TD-DFT calculations.

KEYWORD S

chiroptical, circular dichroism, circularly polarized luminescence, crystal analysis,
enantiomerization barrier, helical elongation, helicene, time-dependent DFT

1 | INTRODUCTION

Helicenes are ortho-fused polycyclic aromatic hydrocar-
bons in which the aromatic rings are angularly annulated

to give them their characteristic helical scaffold.1–3 This
unique structure with an extended π-conjugated system
and inherent chirality imparts various desirable elec-
tronic, photophysical, and chiroptical properties,
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including circular dichroism (CD) and circularly polar-
ized luminescence (CPL).4–6 Exploiting these advantages,
helicenes have found applications in diverse material
fields, such as molecular sensors,7,8 chiral switches,9 bioi-
maging, quantum computers, and displays.10 Extensive
efforts have been devoted to enhancing the optical prop-
erties of helicenes, with a focus on studying the impact of
structural modifications on these properties. Many
reports have delved into the substituents' effects on the
chiroptical features of various hetero-,11 carbo-,12,13 and
expanded helicenes14 revealing improved performance
with specific moieties (e.g. maleimide),15 or patterns
(e.g. push-pull).16 Heteroatoms doping into helicenes, to
modulate their characteristics, has been explored with
many successful examples.17–20 Moreover, the introduc-
tion of certain motifs (e.g. binaphthyl) as a hinge,21 creat-
ing helicenes with multiple helicities,22 or symmetric
architecture showed superior chiroptical behavior.23

Notably, the tuning of the main helical scaffold either
by truncation24 or extension is one of the key tools to mod-
ulate the optical behavior of these structures. Recently, the
impact of both lateral and helical π-extensions on the chir-
optical properties of helicenes has been studied through
some examples showing significant amplification of their
dissymmetry factors (jgabsjandjglumj).25–27 In 2012, Mori
and Inoue conducted a pioneering theoretical and experi-
mental study on the helical extension-CD relationship
through a series of carbo[n]helicenes (n = 4–10).28 This
study initiated further investigations, introducing efficient
strategies for helical chain elongation and examining its
impact on CD.29–31 The exploration of lateral and helical
extension effects on CPL, however, lagged until recent
times. Few studies delved into the influence of lateral
π-extension with specific moieties (e.g., naphthalimides)
on CPL.32,33 In 2021, Pieters, Müllen, and Narita explored
the effects of helical elongation of some π-extended carbo
[n]helicenes (n = 7, 9), revealing that a small variation in
helical length from (n = 7) to (n = 9) caused an approxi-
mately 10-fold increase in dissymmetry factors
(Figure 1A).34 In 2022, Nowak-Kr�ol investigated a specific
class of azabora[n]helicenes (n = 5–7), highlighting the
positive impact of both lateral and helical extensions on
chiroptical responses (Figure 1B).35 In 2023, Martín pre-
sented a different scenario where the helical extension of
bilayer nanographene with a helicene core weakened the
overlapping degree between these two π-extended layers,
resulting in a drop in photophysical and chiroptical prop-
erties (Figure 1C).36

Despite these recent valuable studies, this area is still
underexplored, as most of the effort mainly focused on
carbo[n]helicenes32–34,36 or was confined to computational
investigations without any experimental study.27,37,38 Most
of the examples involved specific types of π-extended

helicenes with complex scaffolds, making it challenging to
generalize their conclusions. Inspired by our prior
works,39–43 and encouraged by their advantageous short-
step synthesis and characteristics, we built our study on
symmetric oxa[n]helicenes. Oxa[n]helicenes, particularly
those with furan rings, show many advantages related to
their ease of synthesis from simple building blocks within
two steps including oxidative coupling followed by
dehydrative cyclization. Additionally, they exhibited high
luminescence compared to other hetero[n]helicenes due to
their elevated HOMO levels.44–46 Therefore, we conducted
a theoretical and computational analysis to examine the
impact of helical extension on a series of previously
reported symmetric oxa[n]helicenes (n = 5–9) on their
structural, photophysical, and chiroptical properties
(Figure 1D).

2 | MATERIALS AND METHODS

2.1 | General

All simple chemicals and solvents were purchased from
commercial suppliers and used without further purifica-
tion. UV–Vis absorption spectra were obtained on a Jasco
V�670 spectrophotometers. CD spectra were recorded on
a Jasco J�1700 spectropolarimeter. Emission spectra
were obtained on an FP � 8,650 spectrometer. CPL spec-
tra were obtained at room temperature using a JASCO
CPL � 300 spectrofluoropolarimeter (Tokyo, Japan). The
absolute PL quantum yields were measured using an
Absolute PL Quantum Yield Measurement System
(C9920–02, Hamamatsu Photonics [Hamamatsu, Japan])
in the air at room temperature.

2.2 | DFT calculations

All DFT calculations were performed using the Gaussian
16 and Gaussian 9 packages of programs.47,48 The geome-
tries of the structures of oxa[n]helicenes OH5, OH7, and
OH9 were optimized at both the ground S0 and excited S1
states calculated with MN15/6-311G(d,p)/PCM = chloro-
form level of theory.49 All stationary points were identi-
fied as stable minima by frequency calculations and the
geometry optimization was achieved using the normal
criteria in Gaussian software. The nucleus-independent
chemical shift (NICS)50,51 indices were calculated in the
centrum of each ring NICS(0) and 1 Å above/below
the centrum NICS(1) within gauge-independent atomic
orbital (GIAO) approximation at MN15/6-311G(d,p) and
B3LYP/6-311G(d,p) levels of theory.52 For the anisotropy
of the induced current density (AICD) simulations, the
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AICD-3.0.4 software was used.53 The enantiomerization
barriers were studied using MN15 as a functional and
6-311G(d,p) as a basis set.54 TD-DFT calculations were
performed directly on cartesian coordinates obtained
from the crystal structures of oxa[n]helicenes at
MN15/6-311G(d,p)/PCM = chloroform level of theory
and on those optimized at the lowest energy singlet
excited state (S1).

55 The electric and magnetic transition
dipole moments of OH5, OH7, and OH9 were calculated
by Multiwfn56 and visulaized using VMD software.57 For
further computational details, (see Section 7, Supporting
Information).

3 | RESULTS AND DISCUSSION

3.1 | Synthetic procedures of OH5, OH7,
and OH9

In order to investigate the optical characteristics of
symmetric oxa[n]helicenes featuring differing quantities
of angularly annulated benzene rings in the ortho
configuration, We synthesized three previously reported
examples.39,58,59 Oxa[5]helicene OH5 was synthesized
smoothly from commercially available rac-BINOL through
an acid-promoted dehydrative cyclization.58 Employing a

FIGURE 1 Impact of the helical extension of [n]helicenes on their optical features.
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similar strategy, we synthesized oxa[7]helicene OH7 from
the corresponding 4,40-biphenanthryl-3,30-diol. Through
a comprehensive screening of different acid additives
(Table S1, see Supporting Information), we discerned that
this synthetic approach yielded OH7 with enhanced over-
all yield and a reduced number of steps.59 For the enantio-
selective synthesis of oxa[9]helicene OH9, we employed
our developed method of enantioselective sequential syn-
thesis of oxa[9]helicenes catalyzed by a chiral vanadium
complex (see Supporting Information).39

3.2 | Effects of helical elongation on the
structures of oxa[n]helicenes

To understand the inherent structural characteristics and
packing arrangements of symmetric oxa[n]helicenes, we
conducted a comparative study. We analyzed the crystal
structures of OH9, in comparison with OH7 and OH5
that our group, along with the Nozaki and Xu groups,
previously crystallized and deposited in the Cambridge
Crystallographic Data Centre (CCDC). These samples
were crystallized in space groups P21 (OH9), Pbca (OH7),
and P1 (OH5) under deposition numbers of CCDC-
1493624, CCDC-280431, and CCDC-1877578, respectively
(Figure 2A). The torsion angles in OH5 and OH7 exhib-
ited similar values, measuring 14.72� for (atoms
a � b � c � d) and 17.88� for (atoms a' � b' � c’ � d').

In contrast, the corresponding angle in OH9 was smaller
at 4.67� for (atoms a“ � b” � c” � d”) due to the overlap-
ping of benzene rings. The sums of all dihedral angles of
the inner helicene rims (φ) were 34.70�, 78.93�, and
125.06� for OH5, OH7, and OH9, respectively, with an
average of (11.57�, 15.79�, and 17.87�). This indicated a
more distorted structure for OH9, as evident in the
increasing pattern of torsion angles between the cen-
troids of terminal rings with the helical extension, mea-
suring 72.8� (OH9) compared to 16.6�, and 36.7� for OH5
and OH7, in turn (Figure 2A). The helical pitch, deter-
mined from the centroid�centroid distance of the over-
lapping benzene rings, measured 3.95 Å for OH7, while
it was 3.53 Å and 3.66 Å between (A' and B0 centroids) in
OH9. The packing arrangement of oxa[n]helicenes was
governed to a large extent by multiple C � H���π interac-
tions between the neighboring molecules of the same or
opposite chirality (Figure 2B).

3.3 | Effects of helical extension on the
aromaticity

Subsequently, we employed nucleus-independent chemi-
cal shifts (NICS), proposed by Schleyer and colleagues, as
a magnetic indicator for studying how chain elongation
can affect aromaticity.50,51 As depicted in Figure 3A, the
aromaticity of terminal rings exhibited a progressive

FIGURE 2 X-ray crystal analysis: (A) single-crystal structures of (M)-OH5, (M)-OH7, and (M)-OH9 with ellipsoids at 30% probability

(H atoms were omitted for clarity); (B) molecular packing of OH5 (viewed along a-axis), OH7 and OH9 (viewed along b-axis), red color

represents (M)-configuration and blue color represents (P)-configuration.
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augmentation with helical elongation, evidenced by
NICS(1) values of �11.5 and �11.4 (rings D and E,
OH5), �12.4 (rings F0 and G', OH7), and �14.2 (rings H00

and I00, OH9). This can be ascribed to the magnetic inter-
play between the superimposed rings, elucidated through
the Johnson-Bovey model, since the distance between
rings is approximately 3.5–4.0 Å (Figure 2A).60 On the
other hand, the aromaticity of central furan rings (A, A0,
and A00) decreased with helical elongation. This trend
aligned with some previous observations in other classes
of polyacenes during NICS calculations, prompting
researchers sometimes to interpret it as an overestima-
tion of NICS for the local aromaticity of central rings.61

The main reason behind this decline in aromaticity is the
distortion in planarity of the furan cores with helical
elongation, a phenomenon supported by precedent stud-
ies on carbo[n]helicenes.61 Similarly, the distortion in
planarity elucidated the decreased aromaticity of some
rings (e.g. rings D0 and E' of OH7, and rings D00 and E00 of
OH9) relative to other benzene rings (Figure 3A). To gain
further insights, we conducted the anisotropy of the
induced current density (AICD) calculations for OH5,
OH7, and OH9 at the B3LYP/6-311G(d,p) level of theory
in the gas phase (Figure 3B).53 The plot revealed a clock-
wise current flowing along the fused furan and benzene
rings, aligning with those reported in other helicene scaf-
folds, typically characterized by diatropic ring currents.62

3.4 | Photophysical properties of the oxa
[n]helicenes

The absorption and emission spectra of OH5, OH7, and
OH9 in chloroform solutions (1 � 10�5 M) were studied
and are presented in Figures 4A and B. The extended
helical length of OH9, denoted as n, imparted greater
π-conjugation compared to OH7 and OH5, evident from
the red-shifted absorption and emission bands. In chloro-
form, OH5 exhibited a noteworthy absorbance peak at
356 nm with an absorption coefficient of (ε = 3.1 �
104 M�1�cm�1), and an optical bandgap (Eg = 3.44 eV).
Similarly, OH7 and OH9 displayed their highest
absorbances at 388 nm (ε = 1.3 � 104 M�1�cm�1) and
404 nm (ε = 1.2 � 104 M�1�cm�1), with optical bandgaps
(Eg) of 3.13 eV and 3.02 eV, respectively (more details
in Supporting Information). The photoluminescence
(PL) spectra of oxa[n]helicenes were recorded in pure
chloroform and demonstrated bathochromic shifts with
emission maxima at 362 and 380 nm for OH5, 398 and
416 nm for OH7, and 411 and 432 nm for OH9. Employ-
ing time-dependent density functional theory (TD-DFT)
calculations, we investigated the electronic transition
properties of OH5, OH7, and OH9 upon optimizing their
molecular structures at the lowest energy singlet excited
state (S1).

63,64 The convergence of these optimized struc-
tures was confirmed through frequency analysis, showing

FIGURE 3 Aromaticity of symmetric oxa[n]helicenes: (A) NICS(0) and NICS(1) values of OH5, OH7, and OH9 calculated at the

MN15/6-311G(d,p) level of theory; (B) ACID plots calculated at the B3LYP/6-311G(d,p) level of theory (isosurface value: 0.05).
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no imaginary frequencies. The frontier orbitals of sym-
metric oxa[n]helicenes (n = 5–9) are not degenerate, and
only the LUMO ! HOMO transitions contribute to the
S1 ! S0 transitions. Oscillator strength of the S1 ! S0
transitions decreases with helical elongation, which can
be attributed to the reduced orbital degeneracy of OH5
compared to OH7 and OH9 (Figure 4C).

Generally, most unsubstituted carbo[n]helicenes
(n ≥ 5) exhibit small quantum yields (Φf < 5%) due to
the low oscillator strength of their S1 ! S0 transitions.65

The fluorescence quantum yields (in chloroform solu-
tions 1 � 10�3 M) of OH5 (Φf = 10.7%) and OH7
(Φf = 11.2%) were three times higher than that of OH9
(Φf = 3.8%), which can be attributed to their increased
radiative rate constants (kf). The theoretically determined
kf,calcd values were 0.497, 0.160, and 0.076 ns�1 for OH5,
OH7, and OH9, respectively (further details in Table S25,
ESI). According to the equation Φf = kf/ (kf + knr), which
relates the quantum yield to two decay constants kf and
the nonradiative decay constant knr, the higher kf,calcd

values of OH5 and OH7 compared to OH9 can explain
their higher quantum yields.66,67

3.5 | Enantiomerization barriers of oxa
[n]helicenes

To explore the enantiomerization barriers (P/M) of OH5,
OH7, and OH9, we employed DFT calculations to iden-
tify the transition states with the highest Gibbs free ener-
gies. These states featured a face-to-face orientation of
the terminal rings in the helix, as depicted in Figure 5.
The enantiomerization barriers of OH5, OH7, and OH9
were calculated to be 3.18, 33.56, and 44.46 kcal mol�1,
respectively. These values closely align with those
reported for other helicenes,34,42,68,69 underscoring the
significant influence of helical π-extension on the rigidity
of the helical backbones. Notably, the remarkably high
(P/M) enantiomerization barrier for OH9 contributed to
the exceptional thermal stability of its enantiomers,

FIGURE 4 Photophysical

characters of oxa[n]helicenes OH5,
OH7, and OH9: (A) & (B) UV/Vis

absorption and PL spectra in

chloroform (Conc = 1 � 10�5 M);

(C) Frontier Kohn-Sham molecular

orbitals (HOMO & LUMO) of OH5,
OH7, and OH9 optimized in the

lowest energy excited state (S1) and

TD-DFT calculated transitions at

MN15/6-311G(d,p)/PCM =

chloroform level of theory.
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observed when solutions of (M)-OH9 were heated at
150 �C for 2 hours without any racemization. These
results also compare well with the experimentally
determined enantiomerization barrier of (P)-OH9
(�40 kcal mol�1) as reported by Hossain and Karikomi
using an Eyring plot.70

3.6 | Effects of helical elongation on the
chiroptical features of oxa[n]helicenes

Due to the rapid racemization of (P/M)-OH5 at ambient
temperature, achieving chiral resolution for both enantio-
mers proved to be exceptionally challenging. In contrast,
the higher enantiomerization barriers of (P/M)-OH7 and
(P/M)-OH9 facilitated the complete resolution of their
enantiomers through HPLC, employing a Daicel
Chiralpak IA column (Figure S4, see Supporting Informa-
tion). CD spectra of isolated enantiomers (P/M)-OH7 and
(P/M)-OH9 in chloroform solutions (1 � 10�5 M) were
measured (Figure 6A). To assign the configuration of
each isomer, we compared the obtained CD spectra to
those derived from TD-DFT calculations (refer to
Supporting Information) and the previously reported CD
spectra of OH9 by Hossain and Karikomi.70 The absolute
configurations in the first and second fractions of the
chiral HPLC analysis were designated as the (P)- and
(M)-enantiomers, respectively, for both OH7 and OH9.
Interestingly, due to the increase in helical length (n)

from 7 to 9, OH9 exhibited a significantly higher Δε than
OH7 in the long-wavelength region. CD spectra
revealedjgabsj values for OH7 as 4.6 � 10�3 and
1.8 � 10�3 at λabs = 319 and 268 nm, respectively
andjgabsjvalues for OH9 as 1.6 � 10�3, 5.3 � 10�3,
8.0 � 10�3, 4.4 � 10�3, and 3.9 � 10�3 at λabs = 405,
353, 316, 300, and 269 nm, in turn, for both enantiomers
(Table 1). The higher values of gabs for OH9 were further
supported by simulated CD spectra (Figure S16, see
Supporting Information).

Subsequently, CPL spectra of (P/M)-OH7 and (P/M)-
OH9 were measured to explore the potential of these oxa
[n]helicenes as chiral emitters. Thejglumjvalues were mea-
sured as 0.81 � 10�3 at 402 nm for OH7 and 2.2 � 10�3

at 413 nm for OH9, with the (P)-configuration exhibiting
a positive Cotton effect and the (M)-configuration dis-
playing a negative Cotton effect (Figure 6A). According
to theory,71,72 glum can be determined by the following
eq. 1:

j g j¼ 4: j μ j : jm j :cos θμ,m
μj j2þ mj j2 ð1Þ

Therefore, the electric (μ) and magnetic (m) transition
dipole moments, as well as the angle (θ) between μ and
m, of (M)-OH5, (M)-OH7, and (M)-OH9 for their S1 ! S0
transitions were determined using TD-DFT calculations
(Figure 6B).73,74 For organic materials, the jmj value is

FIGURE 5 (P/M) Enantiomerization process of OH5 (A), OH7 (B), and OH9 (C); relative Gibbs free energies were calculated in

(kcal Mol�1) at the MN15/6-311G(d,p) level of theory.
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typically much lower than thejμjvalue (Table 1). The
above equation can thus be simplified as glum = 4 cos
θjmj/jμj. The lower jμjand larger cos θ of OH9 than of
OH7 lead to a three-fold increase in the calculated lumi-
nescence dissymmetry factor (gcal) (Table 1), consistent
with the trend observed experimentally (Figure 6A).

Similarly, OH5 exhibited a parallel pattern in the calcula-
tions, featuring a lowerjmj, higherjμj, and a smaller (θ) of
only 91�, (cosθ very close to zero). These factors collec-
tively led to a significant drop in the calculated dissym-
metry factorjgcaljof OH5 compared to OH7 and OH9
(Table 1). The comprehensive understanding of the

FIGURE 6 Chiroptical

properties of oxa[n]helicenes:

(A) CD (solid line) and CPL spectra

(dashed line) of (M)-OH9 (blue), (P)-

OH9 (red), (M)-OH7 (black), (P)-

OH7 (green), studied in chloroform

(Conc = 1 � 10�5 M); (B) the

transition electricjμ’j(red), and
magneticjm’j(blue) dipole moment

(TEDM) & (TMDM) densities for the

S1 ! S0 transition of (M)-OH5, (M)-

OH7, and (M)-OH9 calculated at the

MN15/6-311G(d,p)/PCM =

chloroform level of theory

(isosurface value: 0.003 a.u.). the

length of vectors is amplified for

clarity.

TABLE 1 Chiroptical features of (M)-OH5, (M)-OH7, and (M)-OH9.

CD S1 ! S0 transition CPL

λ
(nm)

gabs
(10�3)

jμj(10�20

esu cm)a
jmj(10�20

erg G�1)b
θμ,m
(deg)c

cos
(θμ,m)

(R) (10�40

(erg esu
cm G�1)d

gcal
e

(10�3)
λem
(nm)

glum
e

(10�3)

(M)-OH5 - - 625.61 1.14 91� �0.020 �14.64 �0.15 - -

(M)-OH7 319 4.6 447.53 1.58 93� �0.059 �41.46 �0.83 402 �0.81

(M)-OH9 316 8.0 333.30 1.24 99� �0.154 �63.44 �2.28 413 �2.20

aElectric transition dipole moments (ETDM) for the S1 ! S0 transitions.
b Magnetic transition dipole moments (MTDM) for the S1 ! S0 transitions.

c The angle
between ETDM and MTDM vectors. d Rotational strength. e Dimensionless values.
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influence of helical extension on chiroptical features of
oxa[n]helicenes, provides a valuable roadmap for design-
ing chiral emitters that seamlessly integrate the ease of
enantioselective synthesis (through their well-established
chemistry) with the superior optical performance.75

The concept of fluorescence brightness has recently
been extended to include CPL emitters, introducing
the CPL brightness (BCPL) as a metric for evaluating
their overall performance (eq. 2), where the (ελ) is the
molar extinction coefficient measured at the excitation
wavelength.76

BCPL ¼ ελ:Φf :
glum
2

ð2Þ

With the chiroptical results and Φf in hand, the BCPL
values of both OH7 and OH9 were calculated to be
1.35 M�1 cm�1. This finding can be interpreted in the
context of each one having a distinct advantage over
the other: OH9 exhibits higher (� 3 times) glum, while
OH7 demonstrates a higher (� 3 times) quantum yield
(further details in Table S26, ESI).

4 | CONCLUSION

In conclusion, our investigation into the impact of helical
extension on a series of symmetric oxa[n]helicenes
(n = 5–9) provided comprehensive insights into their
structural, photophysical, and chiroptical features. The
single crystal X-ray analysis unveiled structural variations
accompanying helical extension, influencing torsion
angles, helical pitch, and packing arrangements domi-
nated by C–H���π interactions. NICS calculations revealed
a progressive augmentation in the aromaticity of terminal
benzene rings with helical elongation, while the aroma-
ticity of central furan rings decreased due to planarity
distortion. Furthermore, the extended helicity induced
red-shifted absorption and emission bands. Our TD-DFT
calculations demonstrated a decrease in HOMO/LUMO
gaps with helical extension, resulting in a reduction of
optical bandgaps (Eg) to 3.02 eV for OH9, compared to
3.44 eV for OH5. The fluorescence quantum yields of
OH5 (Φf = 10.7%) and OH7 (Φf = 11.2%) were three
times higher than that of OH9 (Φf = 3.8%). Calculated
enantiomerization barriers of OH5, OH7, and OH9 (3.18,
33.56, and 44.46 kcal mol�1, respectively) underscored
the significant influence of helical π-extension on back-
bone rigidity.

A slight variation in the main helical scaffold from
(n = 7) to (n = 9) induced an approximately three-fold
increase in dissymmetry factors, with the largest values
ofjglumjobserved in OH9 (2.2 � 10�3) compared to OH7

(0.8 � 10�3). The lowerjμjand larger θ of OH9 than
OH7 led to this three-fold increase. Finally, the BCPL
values of both OH7 and OH9 were calculated to be
1.35 M�1 cm�1 as each one shows a distinct advantage
over the other. These findings collectively highlight the
profound impact of helical extension on the structural
and (chir)optical properties of oxa[n]helicenes. Further
investigations for higher and unsymmetrical hetero[n]
helicenes are currently under investigation.
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