320 research outputs found

    The effect of detachment and attachment to a kink motion in the asymmetric simple exclusion process

    Full text link
    We study the dynamics of a kink in a one-lane asymmetric simple exclusion process with detachment and attachment of the particle at arbitrary sites. For a system with one site of detachment and attachment we find that the kink is trapped by the site, and the probability distribution of the kink position is described by the overdumped Fokker-Planck equation with a V-shaped potential. Our results can be applied to the motion of a kink in arbitrary number of sites where detachment and attachment take place. When detachment and attachment take place at every site, we confirm that the kink motion obeys the diffusion in a harmonic potential. We compare our results with the Monte Carlo simulation, and check the quantitative validity of our theoretical prediction of the diffusion constant and the potential form.Comment: 10 pages, 5 figure

    Fabrication of Unglazed Ceramic Tile Using Dense Structured Sago Waste and Clay Composite

    Full text link
    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting this waste into a useful material is possible. In the present study, physical properties of dense structured sago waste and clay composite were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of ash (obtained from the sago waste) and clay was characterized. The prepared sample was sintered at the temperature range from 800 to 1,200 °C using electric furnace. The density, linear shrinkage and water absorption of the sintered sample were determined by using the Archimedes' method. The experimental result indicated that the density of the sintered sample increased with increasing sintering temperature up to 1100 °C and then slightly decreased afterward. The water absorption of the products decreased with an increase in sintering temperature. In the sintered sample at 1,100 °C, the water absorption decreased rapidly and water adsorption of less than 1%was achieved. This water absorption was less than 5% which was needed for unglazed floor tile. The result of water adsorption suggest that it is possible to use this sample as a raw material for producing the ceramic floor tile

    The first experiment of a THz gyrotron with a pulse magnet

    Get PDF
    A THz gyrotron with a pulse magnet has been designed, constructed and operated in FIR FU. It is developed as one of high frequency gyrotrons included in Gyrotron FU Series. The gyrotron has already achieved the first experimental result for high frequency operations whose radiation frequency exceeds 1 THz. In this paper, the design detail and the operation test results for sub-terahertz to terahertz range are described. The second harmonic operation is confirmed experimentally at the expected frequency of 1.005 THz due to TE_6,_11 cavity mode at the magnetic field intensity of 19.0 T

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Power-law behavior in the power spectrum induced by Brownian motion of a domain wall

    Get PDF
    We show that Brownian motion of a one-dimensional domain wall in a large but finite system yields a ω3/2\omega^{-3/2} power spectrum. This is successfully applied to the totally asymmetric simple exclusion process (TASEP) with open boundaries. An excellent agreement between our theory and numerical results is obtained in a frequency range where the domain wall motion dominates and discreteness of the system is not effective.Comment: 4 pages, 4 figure

    Parallel Coupling of Symmetric and Asymmetric Exclusion Processes

    Full text link
    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions.Comment: 16 page

    Inhomogeneous Coupling in Two-Channel Asymmetric Simple Exclusion Processes

    Full text link
    Asymmetric exclusion processes for particles moving on parallel channels with inhomogeneous coupling are investigated theoretically. Particles interact with hard-core exclusion and move in the same direction on both lattices, while transitions between the channels is allowed at one specific location in the bulk of the system. An approximate theoretical approach that describes the dynamics in the vertical link and horizontal lattice segments exactly but neglects the correlation between the horizontal and vertical transport is developed. It allows us to calculate stationary phase diagrams, particle currents and densities for symmetric and asymmetric transitions between the channels. It is shown that in the case of the symmetric coupling there are three stationary phases, similarly to the case of single-channel totally asymmetric exclusion processes with local inhomogeneity. However, the asymmetric coupling between the lattices lead to a very complex phase diagram with ten stationary-state regimes. Extensive Monte Carlo computer simulations generally support theoretical predictions, although simulated stationary-state properties slightly deviate from calculated in the mean-field approximation, suggesting the importance of correlations in the system. Dynamic properties and phase diagrams are discussed by analyzing constraints on the particle currents across the channels
    corecore