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We show that Brownian motion of a one-dimensional domain wall in a large but finite system yields av23/2

power spectrum. This is successfully applied to the totally asymmetric simple exclusion process with open
boundaries. An excellent agreement between our theory and numerical results is obtained in a frequency range
where the domain wall motion dominates and the discreteness of the system is not effective.
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The asymmetric simple exclusion process~ASEP! is one
of the simplest models of collective transport of particles
@1–3#. It can be interpreted as a simplified model of traffic
flow @4,5# or as a model of granular flow@6#. Since some
exact solutions of ASEP can be obtained under given bound-
ary conditions, we may capture an essential feature of more
complicated systems such as traffic flows and granular flows.

In the study of the traffic flow or granular flow, the power
spectrumI (v) is used to investigate properties of local den-
sity fluctuations of vehicles or particles and it commonly
shows a power-law formI (v);v2a. For example, in real
observation of granular flow, it is confirmed thata54/3
@6–8#. On the other hand, the value of the exponenta has
not yet been fixed for traffic flows@9,10#. It is worth men-
tioning that the structure factor~Fourier transform of the
power spectrum! in the Rouse model, which is the simplest
model of polymer dynamics, obeys exp@2(t/t)1/2# with the
relaxation timet @11#. Namely, the Brownian motion of
structured material producesI (v);v23/2.

In this paper, we numerically calculate the power spec-
trum for the totally ASEP~TASEP!, which is the simplest
ASEP, and find that this model also exhibits a power law
I (v);v23/2. This behavior can be explained by a domain
wall theory @12,13#.

The TASEP is a continuous-time stochastic process on the
one-dimensional lattice which is defined as follows. Con-
sider the set of lattice points2L/2,2L/211, . . . ,L/2. Each
site i is either occupied by a particle (t i51) or is empty
(t i50). During an infinitesimal time intervaldt, each par-
ticle hops to the right adjacent site with probabilitydt if the
destination site is empty. Moreover, in the case of open
boundaries, a particle is injected to site2L/2 with probabil-
ity adt if the site is empty, and a particle is extracted from
site L/2 with probabilitybdt if the site is occupied.

The steady state of this model is exactly obtained for any
parameter valuesa and b and the system sizeL by the

method of matrix-product ansatz@14#, which can also be
applied to the more general ASEP@15,16#. Moreover, in the
steady state, the mean occupation at sitei, r5^t i&, and the
current J5^t i(12t i 11)& can be calculated in the large-L
limit. As a result, it turns out that there exist three phases
depending values ofa and b as follows. Whena, 1

2 and
a,b, the mean occupation isr5a and the current isJ
5a(12a). This is called the low-density phase. Whenb
, 1

2 and b,a, the mean occupation isr512b and the
current isJ5b(12b). This is called the high-density phase.
Whena. 1

2 andb. 1
2 , the mean occupation isr5 1

2 , and the
current isJ5 1

4 . This is called the maximum current phase.
The phase diagram is illustrated in Fig. 1.

The thick line in Fig. 1,a5b, 1
2 , is the coexistence line,

where we focus our attention in the following. In this case,
there occurs a domain wall between a left-hand region of the
low-density phase and a right-hand region of the high-
density phase. It is known that the time-averaged density
profile is a linear function of position. This means that the
domain wall can be anywhere with equal probability as a
result of its random walk. This kind of kink motion can also
be obtained from a decouple approximation of ASEP where
the equation of density profile is reduced to the inviscid Bur-
gers equation. It should be noted that the inviscid Burgers
equation is a model equation of traffic flow@4,9#.

The average motion and fluctuations of a domain wall are
obtained as follows@12,13#. Assume that the system consists
of a left domain of particle densityr2 and flux j 2 and a
right domain of particle densityr1 and flux j 1 . Then the
drift velocity of the domain wall is derived via the equation
of continuity as
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FIG. 1. The phase diagram of the TASEP with open boundaries.
RegionsA, B, andC mean the low-density phase, the high-density
phase, and the maximum current phase, respectively.
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V5
j 12 j 2

r12r2
. ~1!

This is further interpreted as a result of random walk of the
domain wall with hopping rates

D15
j 1

r12r2
, D25

j 2

r12r2
, ~2!

for a move to the right (D1) and to the left (D2). In par-
ticular, on the coexistence line, the drift velocity vanishes
and the diffusion constant for the domain wall motion is
given by

D5
a~12a!

122a
. ~3!

Spatiotemporal patterns of the TASEP clearly indicate the
domain wall. See figures in Refs.@12,16#. The domain wall
picture gives a phenomenological description of the dynam-
ics of the systems. It has been successfully applied for ex-
plaining the various features of the system such as the nature
of phase transitions and fluctuations in total particle numbers
@12,13#.

We carried out Monte Carlo simulations of the TASEP
with open boundary conditions of system sizeL5200. In
our simulations, one Monte Carlo step corresponds to time
interval 0.1. Parameter values are chosen to bea5b50.2,
which are on the coexistence line. After discarding transient
parts before a sufficiently large timeT0, sequences of site
values$xt5ty(T01t)ut50,1, . . . ,T21% at a fixed position
y are recorded. The length of the sequence isT5220. Fourier
components of the series are denoted byfn . That is,

fn5
1

T (
t50

T21

xte
2 ivnt, ~4!

wherevn52pn/T (n50,1,2, . . . ,). Then the power spec-
trum I (v) is computed by

I ~vn!5T^ufnu2&, ~5!

where the brackets mean averaging over 256 samples.
Figure 2 shows the simulation result fory50, which lies

at the center of the system. It is clearly observed that the
power spectrum is proportional tov23/2 in the frequency
range 531025;231023. In the following, we show that
this power-law behavior is induced by Brownian motion of
the domain wall.

Now we consider a Brownian motion of a domain wall in
an idealized form. Let a domain wall be described by the
step functionu(x) as

t~x,t !5u„x2X~ t !…, ~6!

whereX(t) is a Brownian motion in@2L/2,L/2#. The end
points2L/2 andL/2 are assumed to be the reflecting bound-
aries. Then, the autocorrelation function oft(y,t) is given by

^t~y,t !t~y,0!&5E
2L/2

y

dx0E
2L/2

y

dx Pst~x0!P~x,tux0,0!,

~7!

where Pst(x) is the stationary probability density forX(t)
5x and P(x,tux0,0) is the transition probability density. In
other words, ifD denotes the diffusion constant forX(t),
Pst(x) is the stationary solution of the diffusion equation

]P

]t
5D

]2P

]x2
~8!

with the boundary condition

]P

]x U
x5L/2

5
]P

]xU
x52L/2

50 ~9!

and P(x,tux0,0) is the solution with initial condition
P(x,0ux0,0)5d(x2x0). The equation is easily solved and
we find

Pst~x!5
1

L
~10!

and

P~x,tux0,0!5
1

L
1

2

L (
n:even

e2Dln
2t coslnx0 coslnx

1
2

L (
n:odd

e2Dln
2t sinlnx0 sinlnx, ~11!

whereln5pn/L with n51,2,3, . . . . Then, the integral on
the right-hand side of Eq.~7! is carried out to produce

^t~y,t !t~y,0!&5
~L12y!2

4L2
1 (

n51

`
e2Dln

2t

L2ln
2

3@11~21!n21 cos 2lny#. ~12!

FIG. 2. Power spectrum of time sequence$t0(t)% in the TASEP
with open boundaries.
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This result can be generalized to negativet by replacingt by
utu in the above expressions.

Because the power spectrum is equal to the Fourier trans-
form of the autocorrelation function, we have

I ~v!5E
2`

`

e2 ivt^t~y,t !t~y,0!&dt

5
p

2
d~v!1

2D

L2 (
n51

`
11~21!n21 cos 2lny

D2ln
41v2

. ~13!

If the oscillatory part including factor (21)n21 can be ig-
nored and the sum overn can be replaced by an integral, we
can evaluate it as

2D

L2 (
n51

`
11~21!n21 cos 2lny

D2ln
41v2

.
2D

pLE0

` dx

D2x41v2
5

A2D

2L
v23/2. ~14!

Thus, we have arrived at thev23/2 law. It is remarkable that
this result does not depend on positiony. Actually, as we will
see later,I (v) shows deviations from the above result in
small v if uyu is large. This is because the oscillatory part
cannot be ignored in the case of largeuyu and smallv even if
system sizeL is large.

Similar calculations can be done if the space is discrete.
Assume that a domain wall performs a continuous-time ran-
dom walk on the one-dimensional lattice between two re-
flecting walls located at2L/2 and L/2. Denoting hopping
rate byD, we obtain

I ~v!52pS @y#111
L

2

L11
D 2

d~v!

1
2D

~L11!2 (
m51

L 11~21!n21 cosS mp

L11
~2@y#11! D

v2116D2 sin4S mp

2~L11! D
,

~15!

where@y# denotes the largest lattice point that does not ex-
ceedy. As in the previous case, if the oscillatory part can be
ignored, replacement of the sum on the right-hand side by
the integral yields forvÞ0,

I ~v!.
4D

p~L11!
E

0

p/2 dx

v2116D2 sin2 x

5
A2Dv23/2

2~L11! S v

4D
1A11S v

4D D 2

11S v

4D D 2 D 1/2

. ~16!

In the casev!4D, this returns to the previous result.
To confirm the above results, we carried out numerical

simulations. In the simulation, we deal with a system of
length L5200 and let a domain wall carry out a random
walk W(t) with hopping rateD50.1. Figure 3 shows the
numerically obtained power spectra in casesy50 and y
50.3L. In the casey50, the agreement between the theory
and the numerical result is excellent. Deviations from the
power law are observed only in the very small frequency
range v&p2D/L2.2.531025, where discreteness of the
spectrum$ln% is eminent. In the casey50.3L, deviations
extend to larger frequencies. As mentioned earlier, this is
because the oscillatory part cannot be ignored ifuyu is large.
In any case, however, the power-law behavior is still clearly
observed.

Now we return to the TASEP on the coexistence line.
Within the domain wall theory,ty(t) is approximated by

ty~ t !5a1~12a2b!u„y2X~ t !…, ~17!

where X(t) denotes the position of the domain wall at
time t. Then, the prefactor of v23/2 becomes
Aa(12a)(122a)3/2L2. Actually, the straight line in Fig. 2
is depicted with this prefactor. The excellent agreement be-
tween the theory and the numerical result confirms that the
power-law behavior in the power spectrum is induced by the
Brownian motion of a domain wall.

Next, we check system-size dependence of the power
spectrum. Figure 4 shows numerically obtained power spec-
tra with various system sizes. As system sizeL varies, the
power-law part is scaled byL21 as expected, while it is not
the case in higher frequencies. In fact, the higher-frequency
part is independent of system size, representing local fluctua-
tions around the density profile of a step-function shape.
Competition between the two parts determines the high-
frequency cutoff for the power-law behavior. Because the
power law includes factorL21 and the magnitude of the
local fluctuations only slightly changes with frequencies, the
high-frequency cutoff is nearly proportional toL22/3. From

FIG. 3. Power spectra of the time sequences of site values
$t(y,t)5u„y2W(t)…ut50,1,2, . . . % for y50 andy50.3L, where
W(t) means a random walk with hopping rateD50.1. The ‘‘theory
(y50.3L)’’ means the right-hand side of Eq.~15! and the
‘‘asymptotic form’’ means the right-hand side of Eq.~16!.
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the numerical data shown in Fig. 4, values of the high-
frequency cutoff are estimated as 0.013, 0.009, and 0.0044
for L5100, 200, and 500, respectively. These values are
consistent with the above considerations. On the other hand,

the low-frequency cutoff is proportional toL22 as mentioned
earlier. Therefore, as the system size is large, the frequency
range for the power-law behavior is shifted to lower values
and its size increases in the log scale. It is noted that the
present power law is a finite-size effect where the boundaries
play an important role.

In summary, we have derived that the Brownian motion of
a domain wall yields anv23/2 power spectrum. This mecha-
nism is successfully applied to explain the power law in the
power spectrum for local density fluctuations in the TASEP.

It should be noted that the ASEP does not admit more
than one domain wall. In real traffic or granular systems,
however, many domains can occur and interactions between
them may be important. It is a future problem to investigate
power spectra in such more complicated systems.
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