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Power-law behavior in the power spectrum induced by Brownian motion of a domain wall

PHYSICAL REVIEW E 68, 015103R) (2003
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We show that Brownian motion of a one-dimensional domain wall in a large but finite system yield¥a
power spectrum. This is successfully applied to the totally asymmetric simple exclusion process with open
boundaries. An excellent agreement between our theory and numerical results is obtained in a frequency range
where the domain wall motion dominates and the discreteness of the system is not effective.

DOI: 10.1103/PhysRevE.68.015103 PACS nunier02.50.Ey, 05.40-a, 89.40-a

The asymmetric simple exclusion procésSEP is one  method of matrix-product ansafd4], which can also be
of the simplest models of collective transport of particlesapplied to the more general ASEE5,16. Moreover, in the
[1-3]. It can be interpreted as a simplified model of traffic steady state, the mean occupation at Bife=(7;), and the
flow [4,5] or as a model of granular flof6]. Since some currentJ=(7;(1—7;,;)) can be calculated in the large-
exact solutions of ASEP can be obtained under given boundimit. As a result, it turns out that there exist three phases
ary conditions, we may capture an essential feature of moréepending values of and 8 as follows. Whena<3 and
complicated systems such as traffic flows and granular flowgx</, the mean occupation is=« and the current isJ

In the study of the traffic flow or granular flow, the power = (1~ ). This is called the low-density phase. Whgn
spectruml () is used to investigate properties of local den- <z and B<«, the mean occupation ig=1—4 and the
sity fluctuations of vehicles or particles and it commonly CUrrent '&]1::8(1_:81)- This is called the hlgh_—delnsny phase.
shows a power-law form(w)~w®. For example, in real Whena>; andg>3, the mean occupation js= 5, and the
observation of granular flow, it is confirmed that=4/3 current isJ=;. This is called the maximum current phase.

The phase diagram is illustrated in Fig. 1.
[6—8]. On the other hand, the value of the exponanias A o I . .
ot yet been fced for rafic fow0.10, 1 1 worth men. "8 PIKINe DG L B2 s cooxistence e,
ggc\;g? Stg;t:trtgsqirslt;r]gtggu];aear(rx][gggln?/\chtircinissfot[]rg soi:ntp?lgst there occurs a domain wall between a left-hand region of the

) i low-density phase and a right-hand region of the high-
model of polymer dynamics, obeys x(t/7)?] with the density phase. It is known that the time-averaged density

relaxation timer [11]. Namely, the Brownian motion of ,rofile’is a linear function of position. This means that the
structured material producégw) ~ w2 domain wall can be anywhere with equal probability as a

In this paper, we numerically calculate the power specresult of its random walk. This kind of kink motion can also
trum for the totally ASER(TASEP), which is the simplest be obtained from a decouple approximation of ASEP where
ASEP, and find that this model also exhibits a power lawthe equation of density profile is reduced to the inviscid Bur-
|(w)~w~ 32 This behavior can be explained by a domaingers equation. It should be noted that the inviscid Burgers
wall theory[12,13. equation is a model equation of traffic fldw,9].

The TASEP is a continuous-time stochastic process on the The average motion and fluctuations of a domain wall are
one-dimensional lattice which is defined as follows. Con-gbtained as follow$12,13. Assume that the system consists
sider the set of lattice points L/2,—L/2+1,... /2. Each  of a left domain of particle density_ and fluxj_ and a
site i is either occupied by a particler(=1) or is empty  right domain of particle density, and fluxj, . Then the
(7i=0). During an infinitesimal time intervalt, each par-  drift velocity of the domain wall is derived via the equation
ticle hops to the right adjacent site with probabildy if the  of continuity as
destination site is empty. Moreover, in the case of open

boundaries, a particle is injected to sitd/2 with probabil- p
ity adt if the site is empty, and a particle is extracted from C
site L/2 with probability Sdt if the site is occupied. A
The steady state of this model is exactly obtained for any 12t
parameter valuesx and 8 and the system sizé by the
B
*Present and permanent address: Department of Physics, Kyoto 0 1'/2 o
University, Yoshida-Nihonmatsu-Cho, Kyoto 606-8501, Japan.
Electronic address: takesue@phys.h.kyoto-u.ac.jp FIG. 1. The phase diagram of the TASEP with open boundaries.

"Present and permanent address: Department of Physics, KyoRegionsA, B, andC mean the low-density phase, the high-density
University, Yoshida-Nihonmatsu-Cho, Kyoto 606-8501, Japan. phase, and the maximum current phase, respectively.
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V= J+7)- ] (1) 103 F simulation (TASEP) —— |
pP+—pP- 2a(l-a)(1-20)"]" s,
2L ®

This is further interpreted as a result of random walk of the 102
domain wall with hopping rates
7~
. . 3 .
I+ = ='10"

)

D = H —_ 1
T opi—p- pi—p-

—

for a move to the right@ ) and to the left D_). In par-
ticular, on the coexistence line, the drift velocity vanishes

and the diffusion constant for the domain wall motion is 101}
given by ' . . . A
10°  10* 10° 102 100 1
a(l—a) @
“1-2a 3) FIG. 2. Power spectrum of time sequereg(t)} in the TASEP

with open boundaries.

Spatiotemporal patterns of the TASEP clearly indicate the
domain wall. See figures in Refgl2,16. The domain wall y y
picture gives a phenomenological description of the dynam- (7(¥,1)7(¥,0))= fﬁuzdxofiuzdx Ps(X0) P(X,t|X0,0),
ics of the systems. It has been successfully applied for ex- 7)
plaining the various features of the system such as the nature
of phase transitions and fluctuations in total particle numbergyhere P¢(x) is the stationary probability density fof(t)
[12,13. =x and P(x,t|x,,0) is the transition probability density. In

We carried out Monte Carlo simulations of the TASEP other words, ifD denotes the diffusion constant fo(t),
with open boundary conditions of system size=200. In P (x) is the stationary solution of the diffusion equation
our simulations, one Monte Carlo step corresponds to time
interval 0.1. Parameter values are chosen tarbe3=0.2, IP 9°P
which are on the coexistence line. After discarding transient e D— (8)
parts before a sufficiently large timE,, sequences of site 28
values{x,= 7, (To+1)[t=0,1,... T—1} at a fixed position

y are recorded. The length of the sequencB=is22°. Fourier with the boundary condition

components of the series are denoteddghy That is, 9P 9P
| == =0 €]
1 _ Xy IXlie i
== Xteilw"t! (4)
T =0

and P(x,t|x,,0) is the solution with initial condition

P(x,0/X0,0)= 8(x—Xo). The equation is easily solved and
where w,=2mn/T (n=0,1,2 ...,). Then the power spec- \ye find

trum | (w) is computed by
1
H(@n) =T(| ¢nl%), (5) Ps(X)= [ (10

where the brackets mean averaging over 256 samples.
Figure 2 shows the simulation result fp=0, which lies

at the center of the system. It is clearly observed that the 1 2 )

power spectrum is proportional te 2 in the frequency P(X,t|X0,00= =+ — > e PMatcos\ jXo COSA X

range 5<10 °~2x10 3. In the following, we show that L L nieven

this power-law behavior is induced by Brownian motion of 2 )

the domain wall. +— > e P\lsinkXosink,X,  (11)
Now we consider a Brownian motion of a domain wall in L rioud

an idealized form. Let a domain wall be described by the ) ,

where\,=mn/L with n=1,2,3 ... . Then, the integral on

step functiond(x) as _ . ; .
the right-hand side of E(7) is carried out to produce

7(X,t) = 6(x—X(t)), (6)

(L+2y)? & e Pt
whereX(t) is a Brownian motion irf —L/2,L/2]. The end {7y D7(y.0)= e
points—L/2 andL/2 are assumed to be the reflecting bound- "
aries. Then, the autocorrelation functionzg¥,t) is given by X[1+(—1)" tcos2y]. (12

015103-2
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This result can be generalized to negati\® replacingt by 10° = ————r :
|t| in the above expressions. 10¢ F= , Sl{ng‘a“g’“_(gzg)): ]
Because the power spectrum is equal to the Fourier trans- 5 - Slm‘ﬁf'eooryn (2;0:3 L)
form of the autocorrelation function, we have 107 ¥ asymptotic form ------- ]
10 |
_ |7 aiat 210
l(w)=| e '“Yr(y,H)r(y,0))dt S
_ [ 1
776( )+2D g 1+(—1)""tcos,y 13 107}
==6w)+— . 2|
2 L2 =1 Dz)\ﬁ+w2 10
107} :
If the oscillatory part including factor€1)""* can be ig- 107 — - = — — _—
nored and the sum overcan be replaced by an integral, we 10 10 107 ¢ 10 10 1

can evaluate it as . .
FIG. 3. Power spectra of the time sequences of site values

w B {7(y,t)=0(y—WI(t))|t=0,1,2 ...} for y=0 andy=0.3L, where
1

2D 1+(=1)" “cosAny W(t) means a random walk with hopping rde=0.1. The “theory
L2 n=1 DZ)\?H w? (y=0.3L)" means the right-hand side of Eq(l5 and the
“asymptotic form” means the right-hand side of E@.6).

2D (= dx V2D ~3

7LJo D2x*+w? 2L

(14 In the casaw<4D, this returns to the previous result.

To confirm the above results, we carried out numerical
simulations. In the simulation, we deal with a system of
length L=200 and let a domain wall carry out a random
walk W(t) with hopping rateD=0.1. Figure 3 shows the
numerically obtained power spectra in cages0 andy
=0.3L. In the casegy=0, the agreement between the theory

. and the numerical result is excellent. Deviations from the
system sizd. is large.

o > . L wer law ar rv nly in the very small fr n
Similar calculations can be done if the space is discrete e 1aw are observed only e very small frequency

. . . range w=m°D/L%2=2.5x10 °, where discreteness of the
Assume that a domain wall performs a continuous-time ran- : . _ -

X : . spectrum{\,} is eminent. In the casg=0.3_, deviations
dom walk on the one-dimensional lattice between two re-

. : . extend to larger frequencies. As mentioned earlier, this is
flecting walls Ioca_ted at-L/2 andL/2. Denoting hopping because the oscillatory part cannot be ignorgdl|ifis large.
rate byD, we obtain

In any case, however, the power-law behavior is still clearly

Thus, we have arrived at the™ %2 law. It is remarkable that
this result does not depend on positipi\ctually, as we will
see later,l(w) shows deviations from the above result in
small w if |y| is large. This is because the oscillatory part
cannot be ignored in the case of lalgéand smallw even if

L\ 2 observed.
[y]+1+§ Now we return to the TASEP on the coexistence line.
l(w)=2m — S(w) Within the domain wall theoryr,(t) is approximated by
. Ty()=a+(1—a—pB)o(y—X(1)), 17
1+ —1”‘1005(—2 +1) iy .
2D EL: (=1 L+1( yl+1) where X(t) denotes the position of the domain wall at
+ (L+1)2 i _ mm » time t. Then, the prefactor of w *? becomes
w?+16D? sint 200+ D) Va(1—a)(1—2a)32L?. Actually, the straight line in Fig. 2

is depicted with this prefactor. The excellent agreement be-
(15  tween the theory and the numerical result confirms that the
power-law behavior in the power spectrum is induced by the
where[y] denotes the largest lattice point that does not exBrownian motion of a domain wall.
ceedy. As in the previous case, if the oscillatory part can be Next, we check system-size dependence of the power
ignored, replacement of the sum on the right-hand side b¥pectrum. Figure 4 shows numerically obtained power spec-

the integral yields fow# 0, tra with various system sizes. As system sizearies, the
power-law part is scaled by~ ! as expected, while it is not
4D w2 dx the case in higher frequencies. In fact, the higher-frequency
()= W(L‘l’l)f() w2+ 16D2Sire x part is independent of system size, representing local fluctua-
tions around the density profile of a step-function shape.
o / o |2\ 12 Competition between the two parts determines the high-
m= _ap| =+ \/1+ —) frequency cutoff for the power-law behavior. Because the
= 2Dw 4D g (16)  power law includes factot. ~* and the magnitude of the
2(L+1) 142 local fluctuations only slightly changes with frequencies, the
4 high-frequency cutoff is nearly proportional to 3. From
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107 : : : . . the low-frequency cutoff is proportional to? as mentioned
=500 earlier. Therefore, as the system size is large, the frequency
100 ] i range for the power-law behavior is shifted to lower values
5L=2004“ and its size increases in the log scale. It is noted that the
,8\10 i > j present power law is a finite-size effect where the boundaries
= .4 play an important role.
~ 107 In summary, we have derived that the Brownian motion of
1031 a domain wall yields am ~*? power spectrum. This mecha-
nism is successfully applied to explain the power law in the
102} [2a(1_a)(1_2a)3]1/2@_3;‘/‘;..& power spectrum for local density fluctuations in the TASEP.
2

It should be noted that the ASEP does not admit more
, , , , , than one domain wall. In real traffic or granular systems,
105 10% 10° 102 100! 1 however, many domains can occur and interactions between

® them may be important. It is a future problem to investigate
pPower spectra in such more complicated systems.

FIG. 4. Power spectra multiplied by system size for the TASE
of various system size&:=100, 200, and 500.
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