225 research outputs found

    Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion

    Get PDF
    The human gluteus maximus muscle (GMX) is characterised by its insertion to the iliotibial tract (a lateral thick fascia of the thigh beneath the fascia lata), which plays a critical role in lateral stabilisation of the hip joint during walking. In contrast, in non-human primates, the GMX and biceps femoris muscle provide a flexor complex. According to our observations of 15 human embryos and 11 foetuses at 7–10 weeks of gestation (21–55 mm), the GMX anlage was divided into 1) a superior part that developed earlier and 2) a small inferior part that developed later. The latter was adjacent to, or even continuous with, the biceps femoris. At 8 weeks, both parts inserted into the femur, possibly the future gluteal tuberosity. However, depending on traction by the developing inferior part as well as pressure from the developing major trochanter of the femur, most of the original femoral insertion of the GMX appeared to be detached from the femur. Therefore, at 9–10 weeks, the GMX had a digastric muscle-like appearance with an intermediate band connecting the major superior part to the small inferior mass. This band, most likely corresponding to the initial iliotibial tract, extended laterally and distally far from the muscle fibres. The fascia lata was still thin and the tensor fasciae latae seemed to develop much later. It seems likely that the evolutionary transition from quadripedality to bipedality and a permanently upright posture would require the development of a new GMX complex with the iliotibial tract that differs from that in non-human primates. (Folia Morphol 2018; 77, 1: 144–150

    A new graft insertion device for descemet stripping automated endothelial keratoplasty

    Get PDF
    Purpose: Corneal endothelial dysfunction is a major indicator for corneal graft surgery worldwide, and whilst surgical intervention via a range of posterior lamellar surgeries has proven to be hugely beneficial, challenges remain. This is especially so where the anterior chamber is relatively shallow, as is often the case in the Asian population, though not exclusively so. Here, we introduce a new insertion device to deliver endothelial graft tissue for Descemet stripping automated endothelial keratoplasty (DSAEK). Methods: A new surgical tool was designed and manufactured so as to enable a one-step insertion of corneal graft tissue into the anterior chamber based on a pressure-flow concept, rather than the a pull-through one. This was tested ex vivo to assess endothelial cell damage, then performed in 12 first-in-man surgeries. Results: Pre-cut DSAEK lenticules implanted in donor corneas ex vivo via the new technique showed less endothelial cell damage occurs compared to a pull-through technique. Grafts were successful in all patients receiving the new surgery, with no cases of primary graft failure. Conclusion: The newly developed DSAEK inserter is a simple and useful tool for endothelial graft delivery, lessening intraoperative mechanical stress on the graft tissue

    Exploring the logic of mobile search

    Get PDF
    After more than a decade of development work and hopes, the usage of mobile Internet has finally taken off. Now, we are witnessing the first signs of evidence of what might become the explosion of mobile content and applications that will be shaping the (mobile) Internet of the future. Similar to the wired Internet, search will become very relevant for the usage of mobile Internet. Current research on mobile search has applied a limited set of methodologies and has also generated a narrow outcome of meaningful results. This article covers new ground, exploring the use and visions of mobile search with a users' interview-based qualitative study. Its main conclusion builds upon the hypothesis that mobile search is sensitive to a mobile logic different than today's one. First, (advanced) users ask for accessing with their mobile devices the entire Internet, rather than subsections of it. Second, success is based on new added-value applications that exploit unique mobile functionalities. The authors interpret that such mobile logic involves fundamentally the use of personalised and context-based services

    Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length

    Get PDF
    Extent: 11p.Background Poor gene transfer efficiency has been a major problem in developing an effective gene therapy for cystic fibrosis (CF) airway disease. Lysophosphatidylcholine (LPC), a natural airway surfactant, can enhance viral gene transfer in animal models. We examined the electrophysiological and physical effect of airway pre-treatment with variants of LPC on lentiviral (LV) vector gene transfer efficiency in murine nasal airways in vivo. Methods Gene transfer was assessed after 1 week following nasal instillations of a VSV-G pseudotype LV vector pre-treated with a low and high dose of LPC variants. The electrophysiological effects of a range of LPC variants were assessed by nasal transepithelial potential difference measurements (TPD) to determine tight junction permeability. Any physical changes to the epithelium from administration of the LPC variants were noted by histological methods in airway tissue harvested after 1 hour. Results Gene transduction was significantly greater compared to control (PBS) for our standard LPC (palmitoyl/stearoyl mixture) treatment and for the majority of the other LPC variants with longer acyl chain lengths. The LPC variant heptadecanoyl also produced significantly greater LV gene transfer compared to our standard LPC mixture. LV gene transfer and the transepithelial depolarization produced by the 0.1% LPC variants at 1 hour were strongly correlated (r2 = 0.94), but at the 1% concentration the correlation was less strong (r2 = 0.59). LPC variants that displayed minor to moderate levels of disruption to the airway epithelium were clearly associated with higher LV gene transfer. Conclusions These findings show the LPC variants effect on airway barrier function and their correlation to the effectiveness of gene expression. The enhanced expression produced by a number of LPC variants should provide new options for preclinical development of efficient airway gene transfer techniques.Patricia Cmielewski, Don S. Anson and David W. Parson

    The functional significance of microRNA-145 in prostate cancer

    Get PDF
    BackgroundMicroRNAs (miRNAs) are small noncoding RNAs that have important roles in numerous cellular processes. Recent studies have shown aberrant expression of miRNAs in prostate cancer tissues and cell lines. On the basis of miRNA microarray data, we found that miR-145 is significantly downregulated in prostate cancer.Methods and resultsWe investigated the expression and functional significance of miR-145 in prostate cancer. The expression of miR-145 was low in all the prostate cell lines tested (PC3, LNCaP and DU145) compared with the normal cell line, PWR-1E, and in cancerous regions of human prostate tissue when compared with the matched adjacent normal. Overexpression of miR-145 in PC3-transfected cells resulted in increased apoptosis and an increase in cells in the G2/M phase, as detected by flow cytometry. Investigation of the mechanisms of inactivation of miR-145 through epigenetic pathways revealed significant DNA methylation of the miR-145 promoter region in prostate cancer cell lines. Microarray analyses of miR-145-overexpressing PC3 cells showed upregulation of the pro-apoptotic gene TNFSF10, which was confirmed by real-time PCR and western analysis.ConclusionOne of the genes significantly upregulated by miR-145 overexpression is the proapoptotic gene TNFSF10. Therefore, modulation of miR-145 may be an important therapeutic approach for the management of prostate cancer

    A new APE1/Ref-1-dependent pathway leading to reduction of NF-κB and AP-1, and activation of their DNA-binding activity

    Get PDF
    APE1/Ref-1 is thought to be a multifunctional protein involved in reduction–oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-κB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-κB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation
    corecore