25,288 research outputs found

    Maximal subsemigroups of the semigroup of all mappings on an infinite set

    Get PDF
    In this paper we classify the maximal subsemigroups of the \emph{full transformation semigroup} ΩΩ\Omega^\Omega, which consists of all mappings on the infinite set Ω\Omega, containing certain subgroups of the symmetric group \sym(\Omega) on Ω\Omega. In 1965 Gavrilov showed that there are five maximal subsemigroups of ΩΩ\Omega^\Omega containing \sym(\Omega) when Ω\Omega is countable and in 2005 Pinsker extended Gavrilov's result to sets of arbitrary cardinality. We classify the maximal subsemigroups of ΩΩ\Omega^\Omega on a set Ω\Omega of arbitrary infinite cardinality containing one of the following subgroups of \sym(\Omega): the pointwise stabiliser of a non-empty finite subset of Ω\Omega, the stabiliser of an ultrafilter on Ω\Omega, or the stabiliser of a partition of Ω\Omega into finitely many subsets of equal cardinality. If GG is any of these subgroups, then we deduce a characterisation of the mappings f,g∈ΩΩf,g\in \Omega^\Omega such that the semigroup generated by G∪{f,g}G\cup \{f,g\} equals ΩΩ\Omega^\Omega.Comment: Revised according to comments by the referee, 29 pages, 11 figures, to appear in Trans. American Mathematical Societ

    Parametric down-conversion from a wave-equations approach: geometry and absolute brightness

    Full text link
    Using the approach of coupled wave equations, we consider spontaneous parametric down-conversion (SPDC) in the narrow-band regime and its relationship to classical nonlinear processes such as sum-frequency generation. We find simple expressions in terms of mode overlap integrals for the absolute pair production rate into single spatial modes, and simple relationships between the efficiencies of the classical and quantum processes. The results, obtained with Green function techniques, are not specific to any geometry or nonlinear crystal. The theory is applied to both degenerate and non-degenerate SPDC. We also find a time-domain expression for the correlation function between filtered signal and idler fields.Comment: 10 pages, no figure

    Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging: Part I - Processing parameters, mechanical properties and microstructure

    Get PDF
    A study simulating thin slab continuous casting followed by direct charging into an equalisation furnace has been undertaken based on six low carbon (0.06wt-%) vanadium microalloyed steels. Mechanical and impact test data showed properties were similar or better than those obtained from similar microalloyed conventional thick cast as rolled slabs. The dispersion plus dislocation strengthening was estimated to be in the range 80-250MPa.A detailed TEM/EELS analysis of the dispersion sized sub-15nm particles showed that in all the steels, they were essentially nitrides with little crystalline carbon detected. In the Steels V-Nb, V-Ti and V-Nb-Ti, mixed transition metal nitrides were present. Modelling of equilibrium precipitates in these steels, based on a modified version of ChemSage, predicted that only vanadium rich nitrides would precipitate in austenite but that the C/N ratio would increase through the two phase field and in ferrite. The experimental analytical data clearly points to the thin slab direct charging process, which has substantially higher cooling rates than conventional casting, nucleating non-equilibrium particles in ferrite which are close to stoichiometric nitrides. These did not coarsen during the final stages of processing, but retained their highly stable average size of ~7nm resulting in substantial dispersion strengthening. The results are considered in conjunction with pertinent published literature

    Compact Brillouin devices through hybrid integration on Silicon

    Full text link
    A range of unique capabilities in optical and microwave signal processing have been demonstrated using stimulated Brillouin scattering. The desire to harness Brillouin scattering in mass manufacturable integrated circuits has led to a focus on silicon-based material platforms. Remarkable progress in silicon-based Brillouin waveguides has been made, but results have been hindered by nonlinear losses present at telecommunications wavelengths. Here, we report a new approach to surpass this issue through the integration of a high Brillouin gain material, As2S3, onto a silicon chip. We fabricated a compact spiral device, within a silicon circuit, achieving an order of magnitude improvement in Brillouin amplification. To establish the flexibility of this approach, we fabricated a ring resonator with free spectral range precisely matched to the Brillouin shift, enabling the first demonstration of Brillouin lasing in a silicon integrated circuit. Combining active photonic components with the SBS devices shown here will enable the creation of compact, mass manufacturable optical circuits with enhanced functionality

    Optimisation of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Get PDF
    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3 % with practically no degradation from bending. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed with the aim to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50 % to at least 70 %. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the combination with low coupling loss needs to be validated by a short sample test.Comment: to be published in Supercond Sci Techno

    Quasiparticle-like peaks, kinks, and electron-phonon coupling at the (π\pi,0) regions in the CMR oxide La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_{2}O7_{7}

    Full text link
    Using Angle-Resolved Photoemission (ARPES), we present the first observation of sharp quasiparticle-like peaks in a CMR manganite. We focus on the (Ï€\pi,0) regions of k-space and study their electronic scattering rates and dispersion kinks, uncovering the critical energy scales, momentum scales, and strengths of the interactions that renormalize the electrons. To identify these bosons we measured phonon dispersions in the energy range of the kink by inelastic neutron scattering (INS), finding a good match in both energy and momentum to the oxygen bond-stretching phonons

    Evolution of constrained layer damping using a cellular automaton algorithm

    No full text
    Constrained layer damping (CLD) is a highly effective passive vibration control strategy if optimized adequately. Factors controlling CLD performance are well documented for the flexural modes of beams but not for more complicated mode shapes or structures. The current paper introduces an approach that is suitable for locating CLD on any type of structure. It follows the cellular automaton (CA) principle and relies on the use of finite element models to describe the vibration properties of the structure. The ability of the algorithm to reach the best solution is demonstrated by applying it to the bending and torsion modes of a plate. Configurations that give the most weight-efficient coverage for each type of mode are first obtained by adapting the existing 'optimum length' principle used for treated beams. Next, a CA algorithm is developed, which grows CLD patches one at a time on the surface of the plate according to a simple set of rules. The effectiveness of the algorithm is then assessed by comparing the generated configurations with the known optimum ones
    • …
    corecore