308 research outputs found
State and Local Pension Plans
This paper examines the role and function of pension plans covering state and local government employees in the United States. Covering about 16 million employees (including teachers, fire fighters, police, members of the judiciary, and many other state and local employees), these plans manage a substantial stock of financial assets -- close to 56 billion. Using data gathered from a variety of different sources, some of which have only recently become available, we describe the benefits, financing, and management of these plans, and identify some of the prominent challenges facing these pension plans in the next decade.
Analyzing Farmer Participation Intentions and Enrollment Rates for the Average Crop Revenue Election (ACRE) Program
The 2008 Farm Bill created the Average Crop Revenue Election (ACRE) program as a new commodity support program. Using a multinomial logit model to analyze a mail survey administered before the ACRE sign-up deadline, we identify factors driving farmer intentions regarding ACRE participation. Using a two-limit Tobit model to analyze actual county-level ACRE enrollment rates, we assess the effect of similar factors on actual farmer decisions. Results suggest that primary crops, risk perceptions, risk aversion, and program complexity were important factors. Farmer beliefs and attitudes also played key roles and were evolving during the months before the ACRE deadline.
Germ cell development in the human and marmoset fetal testis and the origins of testicular germ cell tumours
Normal germ cell development in the human testis is crucial for subsequent fertility and reproductive health. Disruption of testis development in fetal life can result in deleterious health consequences such as testicular dysgenesis syndrome (TDS), which includes disorders, such as cryptorchidism, hypospadias, infertility and testicular germ cell tumours (TGCT). A rat model of TDS in which rats are exposed to phthalates in utero has been validated, but does result in the development of TGCT. In humans, TGCTs result from transformation of pre-neoplastic carcinoma in-situ (CIS) cells and these CIS cells are believed to arise from human fetal germ cells during their transition from gonocyte to spermatogonia, based on their morphology and protein expression profile. It has been proposed asynchronous differentiation of germ cells in the human fetal testis may predispose fetal germ cells to become CIS cells. Studying the development of these tumours in humans is difficult because of their fetal origins and prolonged duration from initiation of impaired development to invasive disease. For this reason the use of relevant animal models that can mimic normal and abnormal germ cell development may provide new insight into how TGCT develop. The Common Marmoset monkey, a New World primate exhibits many similarities to the human in terms of reproductive biology and could represent such a model.
This thesis aimed to further characterise the origins of CIS cells in the human testis by investigating the protein expression profile of CIS cells in patients with TGCT and comparing them to established markers of human fetal germ cell types using immunohistochemistry and immunofluorescence. Quantification of the various subpopulations of CIS and proliferation within these populations was performed. The thesis also investigated the Common Marmoset monkey as a potential model of normal testis and germ cell development by comparing the differentiation and proliferation profile of germ cells with those of the human during fetal and early postnatal life. During the present studies methods were successfully developed that enabled us to use testicular xenografts to recapitulate normal development of
immature testes from marmoset and human. This involved grafting pieces of testis tissue subcutaneously under the dorsal skin of immunodeficient mice and retrieving them several weeks later to investigate their development during the grafting period. Xenografts using tissue from fetal, neonatal and juvenile marmosets were performed in addition to testes from first and second trimester human fetuses. Finally the present studies aimed to use the marmoset and the xenografting approach as systems in which to examine the effects of gonadotrophin suppression and phthalate treatment on germ cell differentiation and proliferation, with particular attention to the potential for development of CIS and TGCT.
Heterogeneous phenotypes of CIS cells were identified, mostly consistent with those seen in the normal human fetal testis, however some of these CIS cells did not exhibit the same phenotype as germ cells identified in normal fetal testes. In addition it was shown that some of the proteins considered to be ‘classical’ markers of CIS cells, such as the pluripotent transcription factor OCT4, were not expressed in a proportion of the CIS cells. The proliferation index of CIS cells is also significantly higher in those subpopulations with the most ‘undifferentiated’ phenotype (i.e. OCT4+/VASA-). The present studies have generated novel data showing that the marmoset is a good model of fetal and neonatal germ cell development, with similarities to the human in terms of an asynchronous and prolonged period of differentiation and proliferation of germ cells from gonocyte to spermatogonia. This feature is also common to the human, but not a characteristic of the rodent. Fetal, neonatal and pre-pubertal germ cell development can be re-capitulated by xenografting tissue from marmoset and human testes into nude mouse hosts. Human fetal testis grafts produced testosterone and were responsive to hCG stimulation. First trimester human testis xenografts that have not developed fully formed seminiferous cords prior to grafting can complete the process of cord formation whilst grafted in host mice. In addition, germ cells in fetal human and marmoset xenografts can differentiate and proliferate in a similar manner to that seen in the intact non-grafted testis. In the intact neonatal marmoset, suppression of
gonadotrophins resulted in a 30% decrease in proliferation, however differentiation of gonocytes is not affected. In-utero treatment of neonatal marmosets with mono-n-butyl phthalate was associated with unusual ‘gonocyte’ clusters, however, di-n-butyl phthalate treatment of mice carrying fetal marmoset xenografts resulted in no visible effects on germ cell differentiation or proliferation and did not result in the development of CIS or TGCT.
In conclusion, this thesis has shown that there are many subpopulations of CIS cells of which many have not been previously described. These subpopulations have different characteristics, such as variable proliferation rates and this may indicate the potential for progression or invasiveness. These subpopulations have similar protein expression phenotypes to normal human fetal germ cells although the present studies have identified some CIS cells with phenotypes that are not found in the normal human testis. This thesis has demonstrated that the marmoset is a comparable model to the human in terms of asynchronous fetal germ cell development, which may predispose this species to the development of CIS/TGCT. In addition to the use of intact marmosets, these studies have also demonstrated for the first time that testis xenografting provides a comparable system for testis cord formation, germ cell differentiation and proliferation in fetal/postnatal marmosets and fetal human testis. In addition the marmoset and xenografting models have indicated that phthalates may have minor effects on testis development in the human and marmoset but do not result in CIS or TGCT. These model systems are suitable for further investigation of normal and disrupted testis development
Food Access in Petersburg, Virginia: Final Report and Recommendations
The City of Petersburg has long suffered with issues of limited access to food and food insecurity. Food deserts, or areas underserved by retail food options, are prevalent throughout the City. As a result, the Robert Wood Johnson Foundation has ranked the city last of Virginia\u27s 133 counties in their annual health rankings.
For the Fall 2019 semester, students from Virginia Commonwealth University\u27s L. Douglas Wilder School of Government and Public Affairs, through Dr. John Accordino\u27s Urban Commercial Revitalization course, focused on planning solutions to address food deserts in commercial areas, with the City of Petersburg being one of their clients. The class assessed the potential for commercial revitalization and made five recommendations
Increasing Access to Food: A Comprehensive Report on Food Supply Options
Access to food is one of the most important aspects of a healthy, sustainable community. Grocery stores and other suppliers can serve as an economic anchor to provide social benefits to communities. Unfortunately, many communities do not have convenient and/or affordable access to grocery items, particularly fresh produce.
As part of Virginia Commonwealth University\u27s Fall 2019 graduate course on Urban Commercial Revitalization, class members researched 13 retail and other food access options, which are described in this report. Each chapter covers a food access option and provides basic information that will be useful to individuals, organizations, or government agencies that wish to attract and/or develop grocery operations in their communities
Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission
Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings
Androgen receptor expression is required to ensure development of adult leydig cells and to prevent development of steroidogenic cells with adrenal characteristics in the mouse testis
Background:
The interstitium of the mouse testis contains Leydig cells and a small number of steroidogenic cells with adrenal characteristics which may be derived from the fetal adrenal during development or may be a normal subset of the developing fetal Leydig cells. Currently it is not known what regulates development and/or proliferation of this sub-population of steroidogenic cells in the mouse testis. Androgen receptors (AR) are essential for normal testicular function and in this study we have examined the role of the AR in regulating interstitial cell development.
Results:
Using a mouse model which lacks gonadotropins and AR (hpg.ARKO), stimulation of luteinising hormone receptors in vivo with human chorionic gonadotropin (hCG) caused a marked increase in adrenal cell transcripts/protein in a group of testicular interstitial cells. hCG also induced testicular transcripts associated with basic steroidogenic function in these mice but had no effect on adult Leydig cell-specific transcript levels. In hpg mice with functional AR, treatment with hCG induced Leydig cell-specific function and had no effect on adrenal transcript levels. Examination of mice with cell-specific AR deletion and knockdown of AR in a mouse Leydig cell line suggests that AR in the Leydig cells are likely to regulate these effects.
Conclusions:
This study shows that in the mouse the androgen receptor is required both to prevent development of testicular cells with adrenal characteristics and to ensure development of an adult Leydig cell phenotype
Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice
Modulation of the ageing process by dietary restriction (DR) across multiple taxa is well established. While the exact mechanism through which DR acts remains elusive, the gasotransmitter hydrogen sulphide (H2S) may play an important role. We employed a comparative-type approach using females from three ILSXISS recombinant inbred mouse strains previously reported to show differential lifespan responses following 40% DR. Following long-term (10 months) 40% DR, strain TejJ89—reported to show lifespan extension under DR—exhibited elevated hepatic H2S production relative to its strain-specific ad libitum (AL) control. Strain TejJ48 (no reported lifespan effect following 40% DR) exhibited significantly reduced hepatic H2S production, while H2S production was unaffected by DR in strain TejJ114 (shortened lifespan reported following 40% DR). These differences in H2S production were reflected in highly divergent gene and protein expression profiles of the major H2S production and disposal enzymes across strains. Increased hepatic H2S production in TejJ89 mice was associated with elevation of the mitochondrial H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (MPST). Our findings further support the potential role of H2S in DR-induced longevity and indicate the presence of genotypic-specificity in the production and disposal of hepatic H2S in response to 40% DR in mice
- …