8,525 research outputs found
The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity
The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus
THE ENVIRONMENTAL EFFECTS OF FREEDOM TO FARM
The Federal Agriculture Improvement and Reform Act (FAIR) of 1996 ended commodity specific subsidies and resulted in a significant shift in corn and soybean production in 1997. While conservation compliance improved the environmental health of the Central U.S., changes in production due to the FAIR act have tempered these improvements.Agricultural and Food Policy, Environmental Economics and Policy,
SIMPEL: Circuit model for photonic spike processing laser neurons
We propose an equivalent circuit model for photonic spike processing laser
neurons with an embedded saturable absorber---a simulation model for photonic
excitable lasers (SIMPEL). We show that by mapping the laser neuron rate
equations into a circuit model, SPICE analysis can be used as an efficient and
accurate engine for numerical calculations, capable of generalization to a
variety of different laser neuron types found in literature. The development of
this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit
framework which brought efficiency, modularity, and generalizability to the
study of neural dynamics. We employ the model to study various
signal-processing effects such as excitability with excitatory and inhibitory
pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure
Using the Man9(GlcNAc)2 – DC-SIGN pairing to probe specificity in photochemical immobilization
We demonstrate the expected preference of an immobilised oligosaccharide Man(9)(GlcNAc)(2) upon a 96-well photochemical array, for its known receptor, the cell-surface lectin Dendritic Cell-Specific ICAM3 Grabbing Nonintegrin (DC-SIGN) when compared to immobilised competing monosaccharides
The Athletic Profile of Fast Bowling in Cricket : A Review
Cricket is a global sport played in over 100 countries with elite performers attracting multimillion dollar contracts. Therefore, performers maintaining optimum physical fitness and remaining injury free is important. Fast bowlers have a vital position in a cricket team, and there is an increasing body of scientific literature that has reviewed this role over the past decade. Previous research on fast bowlers has tended to focus on biomechanical analysis and injury prevention in performers. However, this review aims to critically analyze the emerging contribution of physiological-based literature linked to fast bowling in cricket, highlight the current evidence related to simulated and competitive in-match performance, and relate this practically to the conditioning coach. Furthermore, the review considers limitations with past research and possible avenues for future investigation. It is clear with the advent of new applied mobile monitoring technology that there is scope for more ecologically valid and longitudinal exploration capturing in-match data, providing quantification of physiological workloads, and analysis of the physical demands across the differing formats of the game. Currently, strength and conditioning specialists do not have a critical academic resource with which to shape professional practice, and this review aims to provide a starting point for evidence in the specific areaPeer reviewedFinal Accepted Versio
Growing Pains or Opportunities? A Customer Survey of Three Farmers\u27 Markets in One Rural Community
The continued growth of farmers\u27 markets is presenting new challenges to Extension. As the number of markets expands, how can Extension help those in the same community work together for mutual benefit? The study reported here examined similarities and differences among customers attending three different farmers\u27 markets within a single locality in Gettysburg, Pennsylvania. Based on 370 customer surveys, study results underscore the diversity of markets operating within the same community and provide insights into ways Extension might assist markets to work together to expand their shared customer base, increase revenues, and better serve local residents
Dynamical laser spike processing
Novel materials and devices in photonics have the potential to revolutionize
optical information processing, beyond conventional binary-logic approaches.
Laser systems offer a rich repertoire of useful dynamical behaviors, including
the excitable dynamics also found in the time-resolved "spiking" of neurons.
Spiking reconciles the expressiveness and efficiency of analog processing with
the robustness and scalability of digital processing. We demonstrate that
graphene-coupled laser systems offer a unified low-level spike optical
processing paradigm that goes well beyond previously studied laser dynamics. We
show that this platform can simultaneously exhibit logic-level restoration,
cascadability and input-output isolation---fundamental challenges in optical
information processing. We also implement low-level spike-processing tasks that
are critical for higher level processing: temporal pattern detection and stable
recurrent memory. We study these properties in the context of a fiber laser
system, but the addition of graphene leads to a number of advantages which stem
from its unique properties, including high absorption and fast carrier
relaxation. These could lead to significant speed and efficiency improvements
in unconventional laser processing devices, and ongoing research on graphene
microfabrication promises compatibility with integrated laser platforms.Comment: 13 pages, 7 figure
Escape of Trajectories From a Vase-Shaped Cavity
We consider the escape of ballistic trajectories from an open, vase-shaped cavity. Such a system serves as a model for microwaves escaping from a cavity or electrons escaping from a microjunction. Fixing the initial position of a particle and recording its escape time as a function of the initial launch direction, the resulting escape-time plot shows “epistrophic fractal” structure—repeated structure within structure at all levels of resolution with new features appearing in the fractal at longer time scales. By launching trajectories simultaneously in all directions (modeling an outgoing wave), a detector placed outside the cavity would measure a train of escaping pulses. We connect the structure of this chaotic pulse train with the fractal structure of the escape-time plot
Principles of Neuromorphic Photonics
In an age overrun with information, the ability to process reams of data has
become crucial. The demand for data will continue to grow as smart gadgets
multiply and become increasingly integrated into our daily lives.
Next-generation industries in artificial intelligence services and
high-performance computing are so far supported by microelectronic platforms.
These data-intensive enterprises rely on continual improvements in hardware.
Their prospects are running up against a stark reality: conventional
one-size-fits-all solutions offered by digital electronics can no longer
satisfy this need, as Moore's law (exponential hardware scaling),
interconnection density, and the von Neumann architecture reach their limits.
With its superior speed and reconfigurability, analog photonics can provide
some relief to these problems; however, complex applications of analog
photonics have remained largely unexplored due to the absence of a robust
photonic integration industry. Recently, the landscape for
commercially-manufacturable photonic chips has been changing rapidly and now
promises to achieve economies of scale previously enjoyed solely by
microelectronics.
The scientific community has set out to build bridges between the domains of
photonic device physics and neural networks, giving rise to the field of
\emph{neuromorphic photonics}. This article reviews the recent progress in
integrated neuromorphic photonics. We provide an overview of neuromorphic
computing, discuss the associated technology (microelectronic and photonic)
platforms and compare their metric performance. We discuss photonic neural
network approaches and challenges for integrated neuromorphic photonic
processors while providing an in-depth description of photonic neurons and a
candidate interconnection architecture. We conclude with a future outlook of
neuro-inspired photonic processing.Comment: 28 pages, 19 figure
Charge order at the frontier between the molecular and solid states in Ba3NaRu2O9
We show that the valence electrons of Ba3NaRu2O9, which has a quasi-molecular
structure, completely crystallize below 210 K. Using an extended Hubbard model,
we show that the charge ordering instability results from long-range Coulomb
interactions. However, orbital ordering, metal-metal bonding and formation of a
partial spin gap enforce the magnitude of the charge separation. The striped
charge order and frustrated hcp lattice of Ru2O9 dimers lead to competition
with a quasi-degenerate charge-melted phase under photo-excitation at low
temperature. Our results establish a broad class of simple metal oxides as
models for emergent phenomena at the border between the molecular and solid
states.Comment: Minor changes, with supporting information. To appear in Phys. Rev.
Let
- …