55,777 research outputs found
Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks
Scientists have long sought to understand how vascular networks supply blood
and oxygen to cells throughout the body. Recent work focuses on principles that
constrain how vessel size changes through branching generations from the aorta
to capillaries and uses scaling exponents to quantify these changes. Prominent
scaling theories predict that combinations of these exponents explain how
metabolic, growth, and other biological rates vary with body size.
Nevertheless, direct measurements of individual vessel segments have been
limited because existing techniques for measuring vasculature are invasive,
time consuming, and technically difficult. We developed software that extracts
the length, radius, and connectivity of in vivo vessels from contrast-enhanced
3D Magnetic Resonance Angiography. Using data from 20 human subjects, we
calculated scaling exponents by four methods--two derived from local properties
of branching junctions and two from whole-network properties. Although these
methods are often used interchangeably in the literature, we do not find
general agreement between these methods, particularly for vessel lengths.
Measurements for length of vessels also diverge from theoretical values, but
those for radius show stronger agreement. Our results demonstrate that vascular
network models cannot ignore certain complexities of real vascular systems and
indicate the need to discover new principles regarding vessel lengths
On the Minimum Distance of Generalized Spatially Coupled LDPC Codes
Families of generalized spatially-coupled low-density parity-check (GSC-LDPC)
code ensembles can be formed by terminating protograph-based generalized LDPC
convolutional (GLDPCC) codes. It has previously been shown that ensembles of
GSC-LDPC codes constructed from a protograph have better iterative decoding
thresholds than their block code counterparts, and that, for large termination
lengths, their thresholds coincide with the maximum a-posteriori (MAP) decoding
threshold of the underlying generalized LDPC block code ensemble. Here we show
that, in addition to their excellent iterative decoding thresholds, ensembles
of GSC-LDPC codes are asymptotically good and have large minimum distance
growth rates.Comment: Submitted to the IEEE International Symposium on Information Theory
201
Spatially Coupled LDPC Codes Constructed from Protographs
In this paper, we construct protograph-based spatially coupled low-density
parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or
uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L,
we obtain a flexible family of code ensembles with varying rates and frame
lengths that can share the same encoding and decoding architecture for
arbitrary L. We demonstrate that the resulting codes combine the best features
of optimized irregular and regular codes in one design: capacity approaching
iterative belief propagation (BP) decoding thresholds and linear growth of
minimum distance with block length. In particular, we show that, for
sufficiently large L, the BP thresholds on both the binary erasure channel
(BEC) and the binary-input additive white Gaussian noise channel (AWGNC)
saturate to a particular value significantly better than the BP decoding
threshold and numerically indistinguishable from the optimal maximum
a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all
variable nodes in the coupled chain have degree greater than two,
asymptotically the error probability converges at least doubly exponentially
with decoding iterations and we obtain sequences of asymptotically good LDPC
codes with fast convergence rates and BP thresholds close to the Shannon limit.
Further, the gap to capacity decreases as the density of the graph increases,
opening up a new way to construct capacity achieving codes on memoryless
binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor
The transient response of global-mean precipitation to increasing carbon dioxide levels
The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change
Quantum control of spin-correlations in ultracold lattice gases
We demonstrate that it is possible to prepare a lattice gas of ultracold
atoms with a desired non-classical spin-correlation function using atom-light
interaction of the kind routinely employed in quantum spin polarization
spectroscopy. Our method is based on quantum non-demolition (QND) measurement
and feedback, and allows in particular to create on demand exponentially or
algebraically decaying correlations, as well as a certain degree of
multi-partite entanglement.Comment: 2 figure
A survey of thermodynamic properties of the compounds of the elements CHNOPS Progress report, 1 Oct. - 31 Dec. 1966
Thermodynamic properties for compounds of the elements carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfu
- …