69 research outputs found

    Evidence for the Magnetoionic Nature of Oblique VHF Reflections from Midlatitude Sporadic-E Layers

    Get PDF
    Mid-latitude sporadic-E (Es) is an intermittent phenomenon of the lower E region of the ionosphere. Es clouds are thin, transient, and patchy layers of intense ionization, with ionization densities which can be much higher than in the background ionosphere. Oblique reflection of radio signals in the very high frequency (VHF) range is regularly supported, but the mechanism for it has never been clearly established—specular reflection, scattering, and magnetoionic double refraction have all been suggested. This article proposes using the polarization behaviour of signals reflected from intense midlatitude sporadic-E clouds as an indicator of the true reflection mechanism. Results are presented from a measurement campaign in the summer of 2018, which gathered a large amount of data at a receiving station in the UK using 50 MHz amateur radio beacons as signal sources. In all cases the signals received were elliptically polarized, despite being transmitted with linear polarization; there were also indications that polarization behaviour varied systematically with the orientation of the path to the geomagnetic field. This represents, for all the examples recorded, clear evidence that signals were reflected from midlatitude Es by magnetoionic double refraction

    Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) II:inverse modeling with high latitude observations to deduce irregularity physics

    Get PDF
    Ionospheric scintillation is caused by irregularities in the ionospheric electron density. The characterization of ionospheric irregularities is important to further our understanding of the underlying physics. Our goal is to characterize the intermediate (0.1–10 km) to medium (10–100 km) scale high-latitude irregularities which are likely to produce these scintillations. In this paper, we characterize irregularities observed by Global Navigation Satellite System (GNSS) during a geomagnetically active period on 9 March 2012. For this purpose, along with the measurements, we are using the recently developed model: “Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere” (SIGMA). The model is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions and is presented in an earlier paper. We use an inverse modeling technique to derive irregularity parameters by comparing the high rate (50 Hz) GNSS observations to the modeled outputs. In this investigation, we consider experimental observations from both the northern and southern high latitudes. The results include predominance of phase scintillations compared to amplitude scintillations that imply the presence of larger-scale irregularities of sizes above the Fresnel scale at GPS frequencies, and the spectral index ranges from 2.4 to 4.2 and the RMS number density ranges from 3e11 to 2.3e12 el/m3. The best fits we obtained from our inverse method that considers only weak scattering mostly agree with the observations. Finally, we suggest some improvements in order to facilitate the possibility of accomplishing a unique solution to such inverse problems

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    Total electron content - A key parameterin propagation: measurement and usein ionospheric imaging

    Get PDF
    The paper reports on a series of studies carried out within the COST 271 Action relating to the measurement and use of Total Electron Content (TEC) of the ionosphere over North West Europe. Total electron content is a very important parameter for the correction of propagation effects on applied radio systems so that it is vital to have confidence in the experimental measurements and the resultant products derived as aids for the practical user. Comparative investigations have been carried out using TEC values from several different sources. It was found that in general there was broad statistical agreement between the data sets within the known limitations of the techniques, though discrepancies were identified linked to steep ionospheric gradients at the onset of geomagnetic storm disturbance and in the vicinity of the main trough. The paper also reviews recent progress in the development of tomographic inversion techniques that use total electron content measurements to image the ionosphere as an aid to various radio systems applications

    Robust statistics towards detection of the 21 cm signal from the Epoch of Reionization

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionization (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the underlying probability distribution function of fluctuations as a function of spatial scale, and contains different systematic biases and errors to the typical approach to estimating the fluctuation power spectrum. Extraction of histograms of visibilities allows moments analysis to be used to discriminate foregrounds from 21 cm signal and thermal noise. We use the information available in the histograms, along with the statistical dis-similarity of foregrounds from two independent observing fields, to robustly separate foregrounds from cosmological signal, while making no assumptions about the Gaussianity of the signal. Using two independent observing fields to robustly discriminate signal from foregrounds is crucial for the analysis presented in this paper. We apply the techniques to 13 h of Murchison Widefield Array EoR data over two observing fields. We compare the output to that obtained with a comparative power spectrum estimation method, and demonstrate the reduced foreground contamination using this approach. Using the second moment obtained directly from the KDE distribution functions yields a factor of 2-3 improvement in power for k < 0.3 h Mpc-1 compared with a matched delay space power estimator, while weighting data by additional statistics does not offer significant improvement beyond that available for thermal noise-only weights

    Murchison widefield array observations of anomalous variability: A serendipitous night-time detection of interplanetary scintillation

    Get PDF
    We present observations of high-amplitude rapid (2 s) variability toward two bright, compact extragalactic radio sources out of several hundred of the brightest radio sources in one of the Murchison Widefield Array (MWA) Epoch of Reionization fields using the MWA at 155 MHz. After rejecting intrinsic, instrumental, and ionospheric origins we consider the most likely explanation for this variability to be interplanetary scintillation (IPS), likely the result of a large coronal mass ejection propagating from the Sun. This is confirmed by roughly contemporaneous observations with the Ooty Radio Telescope. We see evidence for structure on spatial scales ranging from 10 6 km. The serendipitous night-time nature of these detections illustrates the new regime that the MWA has opened for IPS studies with sensitive night-time, wide-field, low-frequency observations. This regime complements traditional dedicated strategies for observing IPS and can be utilized in real-time to facilitate dedicated follow-up observations. At the same time, it allows large-scale surveys for compact (arcsec) structures in low-frequency radio sources despite the resolution of the array

    Comparing Redundant and Sky-model-based Interferometric Calibration: A First Look with Phase II of the MWA

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved.. Interferometric arrays seeking to measure the 21 cm signal from the epoch of reionization (EOR) must contend with overwhelmingly bright emission from foreground sources. Accurate recovery of the 21 cm signal will require precise calibration of the array, and several new avenues for calibration have been pursued in recent years, including methods using redundancy in the antenna configuration. The newly upgraded Phase II of Murchison Widefield Array (MWA) is the first interferometer that has large numbers of redundant baselines while retaining good instantaneous UV coverage. This array therefore provides a unique opportunity to compare redundant calibration with sky-model-based algorithms. In this paper, we present the first results from comparing both calibration approaches with MWA Phase II observations. For redundant calibration, we use the package OMNICAL and produce sky-based calibration solutions with the analysis package Fast Holographic Deconvolution (FHD). There are three principal results: (1) We report the success of OMNICAL on observations of ORBComm satellites, showing substantial agreement between redundant visibility measurements after calibration. (2) We directly compare OMNICAL calibration solutions with those from FHD and demonstrate that these two different calibration schemes give extremely similar results. (3) We explore improved calibration by combining OMNICAL and FHD. We evaluate these combined methods using power spectrum techniques developed for EOR analysis and find evidence for marginal improvements mitigating artifacts in the power spectrum. These results are likely limited by the signal-to-noise ratio in the 6 hr of data used, but they suggest future directions for combining these two calibration schemes

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures
    • 

    corecore