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ABSTRACT

We explore methods for robust estimation of the 21 cm signal from the Epoch of
Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring
the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates
the underlying probability distribution function of fluctuations as a function of spa-
tial scale, and contains different systematic biases and errors to the typical approach
to estimating the fluctuation power spectrum. Extraction of histograms of visibilities
allows moments analysis to be used to discriminate foregrounds from 21 cm signal
and thermal noise. We use the information available in the histograms, along with
the statistical dis-similarity of foregrounds from two independent observing fields, to
robustly separate foregrounds from cosmological signal, while making no assumptions
about the Gaussianity of the signal. Using two independent observing fields to ro-
bustly discriminate signal from foregrounds is crucial for the analysis presented in this
paper. We apply the techniques to 13 hours of Murchison Widefield Array (MWA)
EoR data over two observing fields. We compare the output to that obtained with a
comparative power spectrum estimation method, and demonstrate the reduced fore-
ground contamination using this approach. Using the second moment obtained directly
from the KDE distribution functions yields a factor of 2-3 improvement in power for
k < 0.3h Mpc~! compared with a matched delay space power estimator, while weight-
ing data by additional statistics does not offer significant improvement beyond that
available for thermal noise-only weights.

Key words: cosmology — instrumentation: interferometers — methods: statistical
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1 INTRODUCTION

The distribution of line emission signal from high-redshift
neutral hydrogen aims to be used as a tracer of physical con-
ditions and structure evolution in the first billion years of the
Universe (Furlanetto et al. 2006). Although weak compared
with foreground continuum emitters (brightness tempera-
tures of milliKelvin compared with hundreds of Kelvin), the
spatial distribution and redshift evolution of the signal pro-
vide insight into the properties of the intergalactic medium,
being sensitive to density of gas, temperature of gas, ra-
diation field, and neutral fraction. Its initial detection, and
future exploration, are therefore primary experiments of low-
frequency radio telescopes, to which the redshifted emission
is sensitive, such as the MWA (Tingay et al. 2013; Bowman
et al. 2013; Wayth et al. 2018), LOFAR' (van Haarlem et al.
2013), the Precision Array for Probing the Epoch of Reion-
ization (PAPER)? (Parsons et al. 2010), and the upcoming
Hydrogen Epoch of Reionization Array (HERA)? (DeBoer
et al. 2017) and Square Kilometre Array (SKA)* (Koopmans
et al. 2015).

Current instruments have placed upper limits on the
spatial power of the brightness temperature distribution of
neutral hydrogen gas, but the challenges of complicated
instrumentation, precision data calibration, and chromatic
foregrounds, have thus far prohibited a detection (Thyagara-
jan et al. 2015; Liu et al. 2015; Trott et al. 2016; Beardsley
et al. 2016; Patil et al. 2017; Paciga et al. 2011; Gehlot et al.
2018).

The international community of 21 cm observational sci-
entists is making good progress toward detection of a signal
from the Epoch of Reionisation, with recent publications
from all major experiments (Patil et al. 2017; Gehlot et al.
2018; Cheng et al. 2018; Beardsley et al. 2016; Choudhuri
et al. 2017). Once a detection is claimed, it is incumbent
on the authors to demonstrate that (1) the signal is cos-
mological, and (2) signal loss has not occurred (i.e., unac-
counted loss of cosmological 21 cm power due to the analysis
methodology). With many foreground fitting approaches, it
is difficult to demonstrate that signal loss has not occurred,
and comparison with simulations is limited by the accuracy
of the simulation to represent the true (currently unknown)
signal structure.

The cosmological signal of brightness temperature fluc-
tuations is expected to be Gaussian-distributed at early
times (consistent with the linear phase of structure forma-
tion and tracing the matter power spectrum), and evolve to
include higher-order terms at later times due to non-linear
evolution and the increasing importance of the radiation
field (Wyithe & Morales 2007). The bulk of the information
is therefore contained in the second moment (variance) of the
distribution. Combined with the signal weakness, the power
spectrum of temperature fluctuations (normalised variance
as a function of spatial scale) therefore presents a natural
statistic for initial detection and exploration of the signal as
a function of spatial scale, and is a primary data product
of the aforementioned experiments. Despite the spherically-

http://www.lofar.org
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averaged (1D) power spectrum providing the largest accu-
mulation of data for the isotropically-distributed signal, of-
ten the two-dimensional (2D) power spectrum is used as an
intermediate product, whereby the data are retained in an-
gular (kL) and line-of-sight (k) modes. This is to attempt
to separate the line emission signal from continuum fore-
grounds, for which the contamination should be contained
in the low k| modes. The point source population is ex-
pected (Datta et al. 2010; Trott et al. 2012; Vedantham
et al. 2012; Liu et al. 2015; Murray et al. 2017) and ob-
served (Jacobs et al. 2016; Trott et al. 2016; Ali et al. 2015;
Beardsley et al. 2016) to form a wedge-like feature in the
low k) modes, due to the incomplete sampling of a radio in-
terferometer. Despite this ‘foreground avoidance’ technique
avoiding >99% of the foreground emission, chromatic in-
struments, imprecise calibration, incomplete source models,
and limited bandwidth, all combine to allow leakage further
into the higher k| modes, biasing the signal and currently
limiting a detection.

The power spectrum is typically estimated via Fourier
Transform of the measured interferometric data, coherent
accumulation of statistically-equivalent measurements (grid-
ding onto Fourier wv-plane), squaring of the averaged ac-
cumulated data, and incoherently averaging over annuli of
k3 = u? + 1% (e.g., Datta et al. 2010). This provides an
estimator of the variance for a given spatial scale. In the
presence of Gaussian-distributed noise and signal, this pro-
vides an unbiased estimate of the power. In the presence
of strong foregrounds, which contribute non-Gaussian sig-
nal that is not statistically-representative of the data (e.g., a
bright extended source at a single sky location), this method
captures all of that excess signal, yielding bias in the output
power spectrum. This motivates the use of Kernel Density
Estimation method to provide a different path to obtaining
the spatial power, which may be more robust to foreground-
induced outlier data and allow for more ready access to the
Gaussian-distributed signal.

KDEs were developed more than half a century ago,
with credit for their motivation and construction to Rosen-
blatt (1956) and Parzen (1962). When trying to estimate
the population distribution from data, one attempts to re-
construct the population properties via estimation of the
sample distribution. A direct histogram of measured values
has the potential to lead to a discretized output, with noisy
measurements yielding bias in the estimates. For any esti-
mation procedure, larger amounts of identically-distributed
data will always yield a more precise and accurate represen-
tation of the underlying distribution.

The KDE attempts to address the discretization prob-
lem by including each measurement in the estimate as a
convolution of the data value with a known, pre-defined ker-
nel function. This smoothing has the benefit of naturally
reducing discretization, but has the potential to overesti-
mate the distribution width (through a kernel that is too
broad) or bias the result (through a kernel function that is
not well-matched to the underlying distribution function).
For our correlation data (the real and imaginary components
of the measured visibilities), each 8-second sample is highly
thermal-noise dominated (even in the presence of residual
foregrounds, after bright foreground removal), providing a
natural choice of kernel as the Gaussian distribution.

MNRAS 000, 1-19 (2019)
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2 METHODS
2.1 Constructing a Kernel Density Estimator

A KDE aims to construct an estimate for the distribution
function of identically distributed data, using the data them-
selves. The kernel is the underlying functional form for de-
termining the contribution of a given measurement to the
overall estimate. For an estimate with minimal bias, the ker-
nel is best to be matched to the true underlying distribution,
although this is often unknown (hence the use of KDE).

For complex-valued visibility data from a radio inter-
ferometer with high spectral and temporal resolution (as is
the case for EoR data), each data sample will be heavily
thermal noise-dominated, rendering a Gaussian kernel to be
a natural choice for our purposes. Moreover, the use of a
KDE to construct the power spectrum necessitates a Gaus-
sian kernel from which the variance can be equated to the
power.

For a set of N identically- and independently-
distributed (iid) data, x;, with mean value Z, an estimate of
their distribution can be found via:

f<x>—N1hi_v‘;K(““"ff), M

where the summation extends over the iid data, K() de-
notes the compact kernel function, and h is a scaling of
the breadth of the kernel, for which an optimal value for
Gaussian-distributed data is found to be (Silverman 1986):

h &~ 1.060(N)~/?, (2)

where o is the standard deviation of the data. For radio
interferometric visibilities, for which the real and imagi-
nary components contain an equal share of 21-cm signal and
Gaussian noise measured in Janskys, S:

f(Si) — Nlm 2[( (MkL’—W) , (3)
with

Si(kr k) =S\ _ (Si(kL, k) = 5)?
K (f) I AT E— “)

and for ¢ € [k1,k]. We then connect the variance to the
power and equate,

(Si(ki k) —8)? & (Sij(ki, ky) — S)?
A e _m = Zexp—

()

where Ps(k1, k) is the power measured in units of Jy?, and
A is an amplitude that depends on the number of visibili-
ties contributing to cell i, and is unused except to estimate
the noise uncertainty. The optimal value for A is found by
estimating the number of visibilities contributing to each
spatial mode, and is computed from the known baseline dis-
tribution and a pre-defined amount of input data (total ob-
serving time). The weak dependence of h on N; allows for
an approximation of this number to be sufficient. For an ul-
timate EoR detection, the kernel gridding size needs to be
smaller than the expected 21 cm signal strength, otherwise
the discretization of the grid will yield an unphysical upper
limit. This choice is discussed in Section 4.

MNRAS 000, 1-19 (2019)

2.1.1 Limitations

Unlike a direct variance estimator, which squares averaged
equivalent data (i.e., data that sample the same sky signal),
the KDE relies on the data being statistically-equivalent,
and providing a representative sample of the full distribution
(i-e., for uv data, while each datum provides a different sta-
tistical realisation of the thermal noise, each u, v point in an
annulus of constant k£, provides a different statistical reali-
sation of the 21-cm signal and the foregrounds). Therefore,
a single sampled u, v location for a given k; will not provide
the underlying distribution function for the 21-cm signal,
and will yield a biased estimator of the variance. Therefore,
the success of the KDE relies on complete and balanced
uv-coverage for a given k2 = u? + v? annulus and benefits
from accumulation of data from multiple observing fields.
By construction, the KDE must use information from differ-
ent baseline vectors (but of similar length). This is because
these different vectors capture different 21cm statistical re-
alisations, allowing the KDE-histogram to be representative
of the statistics of the signal. The sample variance can be
used to estimate which modes contain enough independent
samples to be statistically reliable.

The second limitation comes from the thermal noise un-
certainty reduction with quantity of data. While the gridded
visibility data allows for coherent averaging of statistically-
identical data before incoherent averaging to the spherical
power spectrum, the KDE accumulates information inco-
herently. Thus, instead of gaining by N samples for these
equivalent data, the KDE always gains by v/N. This does
play a role in requiring more data to be accumulated to
reach a thermal noise level, however much of the averaging
for a spherical 1D power spectrum is incoherent, and ther-
mal noise reduction is not the limiting factor for current
experiments. If the KDE can improve the systematic errors
sufficiently, then this will still provide benefit over stochastic
error reduction.

2.1.2 Euxtracting the Cross Power Spectrum from a KDE

Building the data distribution directly from the iid real and
imaginary components of the complex-valued visibilities al-
lows use of a Gaussian kernel for the estimator. The kernel
size parameter, h, is determined by the expected thermal
noise for a given visibility and the number of observations
accumulated for the final estimate. The variance estimated
from such a constructed distribution will yield the thermal
noise power, just as the power spectrum constructed from
squaring of visibilities (the auto power spectrum) will be
dominated by the thermal noise power. To remove the ap-
proximated (but unknown) noise power, the cross power
spectrum can be constructed (such as is used by Trott et al.
2016; Beardsley et al. 2016; Barry et al. 2019), by cross-
multiplying matched data (e.g., closely-spaced interleaved
time samples or frequency samples). The cross power spec-
trum contains no noise bias, but only noise uncertainty, due
to the sample variance remaining from the differing realisa-
tions of the noise. In a similar fashion, the cross KDE power
spectrum can be constructed. The cross power, formed from
two identically-distributed sets of complex-valued data ¥
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and T2, is given by:

P =

= 5 (&1 +22)" (81 + 22) — (&1 — T2)" (21 — 22))
=  Piot — Pair (6)

and is therefore equivalent to the difference in the summed
auto power and the differenced auto power. The cross KDE
power spectrum can be constructed similarly by summing
(‘Totals’) and differencing (‘Differences’) time-interleaved
datasets, estimating their individual variances from the KD
estimates, and taking the difference. In addition to providing
the cross power spectrum, the difference power, Pqig, con-
tains an estimate of the noise power. Throughout, we refer
to these two sets of data as the Totals and Diffs.

Each visibility is weighted by the data content (the visi-
bility weights, which are a product of the channel bandwidth
and temporal resolution), and a spectral taper is applied
prior to spectral Fourier Transform (v — 7) to reduce spec-
tral leakage. For both we employ a Blackman-Harris taper.

In this work, we employ a delay spectrum approach to
computing the power spectral density for a given scale (Par-
sons et al. 2010). The delay spectrum Fourier Transforms
directly over the spectral channels for a given baselines’s vis-
ibility set, and therefore is not a strictly line-of-sight trans-
form (due to the |u| value for a baseline changing with fre-
quency). The delay transform is closely related to the pure
line-of-sight transform, but is not parallel, except for the
k1 = 0 mode. For non-zero k, , it transforms along a direc-
tion with some angle to the line-of-sight, where the angle in-
creases with k. L.e., it mixes angular modes with line-of-sight
modes, thereby producing a non-linear mapping to k1 — k
space. In addition, a direct frequency transform of visibili-
ties neglects any effects of the convolution of the true signal
with the instrument primary beam, and therefore does not
easily capture correlations between bins. As such, the de-
lay spectrum cannot directly be interpreted cosmologically.
However, for this work, and for short baselines of relevance
here, it provides a computationally simple approach to form-
ing KDE estimates of the power. Throughout, each output
in this work uses the same underlying delay spectrum ap-
proach, and therefore the results are internally consistent.

Specifically, to form the KDE histograms, we take the
following steps:

(i) For each snapshot observation, the 384 spectral chan-
nels for each of the 8128 MWA baselines is combined into
two datasets: sums of time-contiguous visiiblities, and dif-
ferences;

(ii) Each set is separately Fourier Transformed to com-
pute its contribution to a given n mode (i.e., V(n) =
Z V;(v) exp —2miv;n for baseline j);

J

(iii) The 8128 baselines of data from that snapshot are
then gridded onto the KDE with a Gaussian kernel, where
the individual baselines are each assigned to the KDE for
a single angular mode (k1 with Au = 2.5)\) according to
their u, v, w values at the lowest frequency channel. No beam
gridding is performed,;

(iv) The next snapshot is read and the same procedure is
applied. Those data are gridded onto the same KDE distri-
butions.

At the end of this process, there is a KDE histogram dis-
tribution for each 7 and k, cell. The datasets used here
contain ~1 billion visibilities in each histogram. The com-
parison delay space power spectrum uses the same approach,
but the summed and differenced data for each baseline and
snapshot are squared to form power, before combining in-
coherently with the remaining baselines and snapshots (i.e.,
each summed or differenced visibility, after Fourier Trans-
forming, is squared, and the combined with other visibilities
of the same angular scale using a weighted average). This
provides a direct comparison between the two approaches.
As before, the crosspower is extracted by subtracting the
power in the differences from the power in the totals, as in
Equation 6.

After forming the KD estimate for each (k1 , k) cell, the
power needs to be extracted by fitting a Gaussian distribu-
tion and using the second moment, or, by directly computing
the sample variance from the histogrammed data.

3 INTERROGATING THE DENSITY
ESTIMATES

Analysis of the KDE-derived histogram distribution func-
tions can be approached in a number of ways, guided by
their form. In this work, we use several approaches to assess
their effectiveness:

(i) Moments analysis: compute the first four moments
of the real and imaginary component histograms to assess
Gaussianity as a function of angular and LOS scale;

(ii) Phase analysis of moments: compute the phase of the
first four moments for each observing field;

(iii) Earth Mover’s Distance (statistical similarity): com-
pute the dis-similarity of the histograms for each observing
field as a function of angular and LOS scale.

Approach (1) has the potential to destroy non-Gaussian EoR
signal, while (2) and (3) can preserve it. Each output of these
approaches is used to weight data in an attempt to improve
the power spectrum, and the results are compared in Section
4.

3.1 Moments Analysis

If the signals were expected to decompose into summed
Gaussians, then fitting multiple Gaussians and extracting
parameters would be useful. However, this approach cannot
guarantee that 21cm signal is not mixed into foreground sig-
nal. Instead, we can be motivated by the expected shape of
the signal: Wyithe & Morales (2007) study the theoretical
brightness temperature distribution functions for the cosmo-
logical signal as a function of scale and redshift. They find
that the signal is primarily Gaussian, but exhibits non-zero
skewness (third moment) for some scales and redshifts. This
skewness does not exceed 0.01. There is no fourth-moment
(kurtosis) present. (More recent analysis by Majumdar et al.
2018, shows similar results.) To study the observed visi-
bility distributions, we can perform moments analysis di-
rectly on the KDE outputs®. Large mean and skewness val-

1 The first four moments are:

MNRAS 000, 1-19 (2019)
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ues, and non-zero kurtosis, suggest foreground contamina-
tion and can guide the next steps in the analysis.

3.2 Phase analysis of moments

The moments are computed for histograms of the real and
imaginary components of the visibilities. This is distinct
from typical power spectrum analysis, where the visibilities
are gridded coherently (with phase) and then squared to
form the power (i.e., phase information is lost). Although
we expect that the statistical properties of the 21 cm sig-
nal from the EoR are the same between fields (up to cosmic
variance), the phase of the signal for any given vector co-
herent k; mode (a single cell in the wv-plane) can differ.
However, when computing the histogram of visibilities for
all angular modes satisfying |E 1| = k1, each cell contributes
a random phase and the real and imaginary component his-
tograms are expected to be similarly distributed. Departure
from similarity of the real and imaginary histograms can oc-
cur for: (1) sufficiently few cells to provide a statistical sam-
ple; or (2) strong, non-stochastic signals imprinting direct
structure. The former case is handled by omitting modes for
which there are few independent samples (small k1 ). It is the
latter case that incorporates the effect of strong foregrounds
that leave structure in the sky. E.g., strong extended sources
(Fornax A), and the Galactic Plane.

The phase of a given visibility cannot be extracted from
the data, but the phase of the KDE-derived moments for
each k1 — kj cell can be used to study parts of the parame-
ter space that display phase significantly different from /4
(equal share for the real and imaginary components). We
therefore can study the phase for each moment using the
real and imaginary component values for the moments in
each k| — k” cell such that:

Im(M;) ™
i(ki,ky) =at ) =
k) = atan (200 ) - 7 @
for moment M, where this is performed from the individual
moments values for each k£, annulus histogram, at each k:”
line-of-sight cell.

3.3 Earth Mover’s Distance

The different foregrounds present in two distinct observing
fields will imprint different structures into the KDE dis-
tribution functions. We want to use this dis-similarity to
discriminate statistically dis-similar foregrounds from sta-
tistically similar cosmological signal. Therefore, the lack of

N (331 _ j) 3
e Skewness = —Jb E (7\/7 )
4 ar

(331‘ -
Var

~
N———
IS
I
w

is — L E
e Kurtosis = N
i=1
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similarity between the distribution functions from two ob-
serving fields for the same k-mode is an indicator of fore-
grounds. Statistically dis-similar histograms suggest fore-
ground contamination because the EoR signal is expected
to be isotropic and homogeneous, and therefore is statisti-
cally similar across the sky. We use the Earth Mover’s Dis-
tance (Olkin & Pukelsheim 1982, EMD; also known as the
Wasserstein Metric) as a measure of the similarity of the
two distributions measured from the two fields. Large val-
ues of the EMD (exceeding that expected from thermal noise
uncertainty) can be used to identify a component of fore-
ground contamination; statistically-similar foregrounds are
preserved in this analysis. Crucially, statistically-similar, but
non-Gaussian, 21 cm signal is also preserved, allowing EMD
analysis to provide a robust measure of some fraction of the
foregrounds without risk of signal loss. For two histograms,
one from each observing field, with cumulative distribution
functions (CDFs) given by ®;(z) and ®2(z), the EMD is
given by:

EMD = Z |D1(xi) — Pa(xi)], (8)

where i indexes over the flux density values of the KDE-
derived CDFs. In all cases, the EMD is computed for a spe-
cific k; — k) cell. The EMD is bounded from below by zero,
and above by a value dependent on the difference between
the mean values for each distribution.

Error analysis can be used to determine the expected
EMD value based on thermal noise uncertainty for each dis-
tribution (computed individually for the dataset from each
observing field), a non-negative value for finite datasets.
Propagating the error for the CDF and then summing to
account for the absolute-value sum, we find that:

Ao? Ty 2, 2 2
ot Z(/ % exp —t /a) dt, 9)

— 0o

(EMD) =

where o and Ao are the expected noise power and noise
uncertainty respectively for each dataset (the latter limited
by the kernel resolution). With the dataset used, we expect:

(EMD) ~ 1.5, (10)

where we emphasise that this is a non-negative quantity.

4 DATA

Data from the 2016 and 2017 EoR seasons of the MWA are
used, across two distinct observing fields. The use of both
fields to discriminate signal from foregrounds is crucial for
the analysis presented in this paper. These data are observed
with Phase II of the array, in which the 128 individual tiles
form a compact configuration, and include two hexagonal
subarrays optimised for EoR science (Wayth et al. 2018).
These data are chosen primarily because the MWA core,
and two hexagonal subarrays, provide the angular symmetry
in uv-coverage required for the KDE to adequately sample
different statistical realisations of the 21-cm signal. Figure
1 shows the inner uv-coverage for a single frequency zenith
snapshot at 187 MHz. Each point is a single baseline, and
the influence of the symmetry of the hexagons is apparent.
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Figure 1. wv-coverage of a zenith snapshot at a single fre-
quency of 187 MHz with the core and two symmetric hexagons
of the MWA Phase II array. The coverage demonstrates the an-
gular symmetry required for the KDE to yield a statistically-
representative distribution of the 21-cm signal. The two annuli
show diagrammatically examples of regions from which the sta-
tistical histograms for the KDE are built. Regions extend from
the centre of the uv plane to radii at which the coverage does not
adequately sample the different angles.

Sample variance can further be improved by including data
from multiple observing fields in each KD estimation, and
sample variance estimates are used in this work to ensure
that these modes have well-sampled statistics in order for
the KDE to yield reliable distributions.

For this experiment, we employ EoR high-band data,
comprising 384 80 kHz spectral channels over 30.72 MHz of
contiguous bandwidth in range 167-197 MHz (z = 7.5—6.2).
These data are observed in two of the primary MWA observ-
ing fields, EoRO (RA=0h, Dec=—27deg.) and EoR1 (RA=4h,
Dec=-27deg.) (details described in Jacobs et al. 2016). We
process 400 2-minute observations, with 8-second temporal
interleaving of two matched datasets, observed in 2016 Au-
gust — 2017 December. The data are chosen such that they
show low ionospheric activity (Jordan et al. 2017) and no
obvious calibration artifacts in the time-interleaved differ-
enced data. The data are calibrated (direction-independent
and direction-dependent) with the MWA Real-Time System
(RTS, Mitchell et al. 2008) and 1000 sources are peeled from
the calibrated visibilities. This is the standard processing
applied to MWA EoR data. These calibrated and peeled
visibilities are used as input to both the KDE and direct
delay transform pipelines (note that this is different to the
standard CHIPS pipeline used for MWA EoR analysis, Trott
et al. (2016)).

The KDE approach is optimised for a flux density reso-
lution and kernel characteristic size, h, commensurate with
the noise level in the data. For each of the real and imagi-
nary components of the visibilities, the expected noise level
for a single 8 second visibility and 30.72 MHz bandwidth
(after Fourier Transforming along the frequency dimension)

EoR1 Power

12

— o 10
11

— . 10

10°F

k;; (hMpc™)
(mK® h® Mpc)
)

(ns) 10

k, (h Mpc™)

Figure 2. Power spectrum of data from the EoR1 field, processed
through a delay space estimator.

is:
SEFD
V2AtAY

With one billion visibilities in the dataset for an average
large angular scale, this yields an optimal scaling of:

h~1.065(N)~/® = 0.02 Jy. (12)

AV = ~ 1.3 Jy. (11)

In this work, we use 6V = 0.01 Jy to resolve (bin) the KDE,
but note that in general this resolution would not be suffi-
cient to discriminate the EoR signal (but is adequate for the
data volume used herein). A higher resolution can be used
when more data are included, at the expense of computa-
tional load.

5 RESULTS

For a point of comparison, the datasets are processed
through a delay-transform procedure, as outlined in Section
2. The delay power spectrum for EoR1 is displayed in Fig-
ure 2. From this delay power spectrum, there are a few key
features that will be of relevance for the analysis to follow:

e The wedge-like signature of foregrounds extending from
low k1 — kj to ki ~ 0.3k Mpc™', kj ~ 0.3h Mpc™;

e Bands of foreground power parallel to the diagonal
wedge, due to the primary beam shape;

e k| harmonics of the kj = 0 mode due to regular missing
spectral channels;

e Excess power beyond the wedge in the ‘EoR Window’
(ky < 0.45h Mpc™!), due to leakage of foreground power
into larger LOS modes.

MNRAS 000, 1-19 (2019)
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Figure 3. Example histograms of the totals (red) and difference
(blue) visibilities for a small k; —kj mode, where foregrounds are
expected to dominate. Here, the kernel scale, h = 0.02 Jy, and is
therefore too small to show on the plot.

5.1 KDE Power Spectrum

The histograms constructed from the calibrated data
vary markedly across k-space. At large scales (ki,k| <
0.1h Mpc™1), where foregrounds are known to dominate, the
totals visibilities exhibit broad, non-Gaussian histograms.
Difference visibilities from the same modes are narrower,
indicative of being mostly noise-like, but do exhibit some
non-Gaussianity from leaked foreground power (Figure 3).
At scall scales (k1 ~ 0.05h Mpc_l,k” ~ 0.1h Mpc™1), the
totals and difference histograms are more similar (Figure
4). However, even here the Totals distribution is broader
than the Differences and this increased power translates to
the leaked foreground power entering the EoR Window in
Figure 2. Despite this region generally having 3—4 orders of
magnitude less foreground power than the wedge, it still ex-
ceeds the noise power, and 21 cm power, in this region. It is
this additional leakage that we want to identify and remove.
The difference in breadth of the two distributions yields the
21 cm power (in the absence of foregrounds). The width of
the Difference visibilities reflects the noise power for a single
Fourier Transformed visibility.

Taking cuts through the parameter space, the his-
tograms can be stacked together to be represented as con-
tour plots. Figures 5 and 6 display heat maps for two angular
scales, both observing fields, and totals and difference visi-
bilities (real part). The colour bars are the same for each set
of panels, and represent the number of visibilities that con-
tributed to the KDE distribution. The important features
lie in the structure of the histograms, and not in the ampli-
tudes, however the peak contour level is set to 1.2x10° to
capture the narrowest peak. Figure 7 shows the lower k
regions in more detail for the Totals. At low k1 — k| (large
scales), the histograms are broad and structured, reducing
to Gaussian-like for cleaner modes. The broad histograms
at regular k| intervals are due to regular missing spectral

MNRAS 000, 1-19 (2019)

1.0

0.6 T

0.6 7

0.4 T

Normalised PDF

0.2 T

i

—40 —20 0 20 40
Flux density (Jy)

Figure 4. Example histograms of the Totals (red) and Differ-
ences (blue) visibilities for a large k) — k| mode within the EoR
Window, where foregrounds are not expected to dominate, but
do show the small power increase that is leaked power visible in
this region in Figure 2.

channels in the data, leading to harmonics of the k; = 0
mode.

From these histograms, it is clear that the KDE yields
additional information to what is available from gridding
and squaring the visibilities, as is usual for a power spec-
trum analysis. The challenge is to understand how this infor-
mation can be leveraged to better discriminate foregrounds
from cosmological signal.

As a point of comparison, we compute the expected
KDE histograms for a realistic model of Fornax A, a promi-
nent extended, bright, structured source in the EoR1 ob-
serving field. Fornax A is the most prominent source in this
field and its model is used in the EoR data calibration and
source peeling steps. A shapelet-based model is constructed
from MWA Phase I and Phase II extended array data (Line
et al. 2019), with a simple constant spectral index across the
band (—0.8). We expect the power to be concentrated at low
k. This model is currently used for our calibration. Details
can be found in Line et al. (2019). The model is fitted in im-
age space, but because shapelet basis functions have known
Fourier transforms, visibilities matching a zenith-pointed ob-
servation of the MWA can be directly calculated. No noise
is added. These visibilities are then fed to the same KD-
estimation software as for the real data. Figure 8 shows a
heat map of the distribution of power for k| = 0.05h Mpc~?t.
The y-axis label has been converted from &, to angular de-
grees to show the concentration of power on 0.5-1.0 degree
scales, consistent with the size of Fornax A. Given the broad
distribution of size scales, and the breadth of the distribu-
tions measured in Jansky, which exceed the datasets for the
full unsubtracted Fornax A model, it is residuals from these
sources that we expect to observe differently in each observ-
ing field.
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Figure 5. Heat maps of the real parts of the visibilities (abscissa: flux density; ordinate: k‘H) of density estimates from 13 hours of data.
(a, b) Total visibilities (sum over adjacent interleaved time samples per baseline) at k; = 0.005h Mpc~! for both fields. (c, d) Same, but
for smaller scales, k; = 0.05h Mpc~!. All colour bars have the same scale, corresponding to 0.1% (white), 1% (yellow), 10% (orange),

50% (red) of maximum.

5.2 Moments analysis

Figures 9 and 10 display the first four moments for the totals
visibilities in the EoRO and EoR1 fields, respectively. The
mean (first), skewness (third) and kurtosis (fourth) moments
are displayed as their absolute values. There are notable
features to these results:

e Non-zero mean values are associated with foreground-
dominated modes

e Skewness exceeding the maximum value expected for
cosmological signal is associated with foreground-dominated
modes, but is most prominent at the edge of the foreground
wedge

e Excess kurtosis appears at the edge of the foreground
wedge, but is negligible in the main wedge

e The values and distributions differ between the two ob-
serving fields.

The significant skewness and kurtosis at the edge of the
main wedge highlights the strong non-Gaussianity of the
foregrounds at the observing horizon where foregrounds are
adding a strong tail to both sides of the KDE histograms.
Most interestingly, the existence of non-zero means, excess
skewness and non-zero excess kurtosis in modes known to
be associated with foreground contamination suggests that
this information may be used to weight modes in the final
1D spherically-averaged power spectrum. The differences be-
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Figure 6. Heat maps of the real parts of visibilities (abscissa: flux density; ordinate: k”) of density estimates from 13 hours of data.
(a, b) Difference visibilities (sum over adjacent interleaved time samples per baseline) at k; = 0.005h Mpc~! for both fields. (c, d)
Same, but for smaller scales, k; = 0.05h Mpc~!. All colour bars have the same scale, corresponding to 0.1% (white), 1% (yellow), 10%

(orange), 50% (red) of maximum.

tween the two observing fields can further be used to tailor
this.

The variance merits particular scrutiny because it is
equivalent to the power spectrum when the data are Gaus-
sian. Unlike the delay space estimator, where all of the struc-
ture of the visibility-derived KDE histograms gets included
in the power spectrum estimate, the variance of the his-
tograms only contains the second moment, removing any
non-zero mean and ignoring higher-order moments. There-
fore, the variance can be used as a clean, Gaussian version
of the power spectrum. The variance for the EoRO field ex-
hibits strong harmonic lines parallel to the wedge, indica-
tive of the power from the Galaxy near the horizon dur-
ing these observations combined with the primary beam re-
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sponse function. Figure 11 contains the variance for EoR1
(scaled to cosmological units), the delay spectrum power
spectrum estimate (reproduced from Figure 2), and the ra-
tio of the two. The ratio shows that the variance is able to
provide a cleaner estimate in the EoR Window, where low-
level non-Gaussian foregrounds are excised. This is a region
of parameter space of high current interest in observational
EoR experiments, where reducing leaked foregrounds can
have substantial gains.

For comparison, the first four moments are com-
puted for mock visibilities derived from a 2lcm-
FAST simulation (Mesinger et al. 2011) at z = 8.28
(‘DELTA_T_V3_NO_HALOS_zSTART005.00000_ZEND009.56801
_FLIPBOXES0-1024_1600MPC_LIGHTTRAVEL’  available
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Figure 7. Heat maps of the real parts of totals visibilities for both fields and the lower portion of k| showing the structure on large
scales. All colour bars have the same scale, corresponding to 0.1% (white), 1% (yellow), 10% (orange), 50% (red) of maximum.
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Figure 8. Heat map for a shapelet-based model of Fornax A, as used in the MWA EoR calibration and peeling pipeline. Fornax A
appears down the main lobe of the EoR1 field. The power is distributed across a range of scales, consistent with the structure of Fornax
A, with the broadest distribution of measured flux densities at angular scales of 0.5-1.0 degree.

from http://homepage.sns.it/mesinger /EOS.html, Figure
12). The simulation yields a cube of angular size 14 degrees
(half the MWA beam), which is tapered with a Blackman-
Harris window function, sampled at the same spectral
resolution as the data and Fourier Transformed in angular
scales to extract a uvyv cube. These model visibilities are
converted to Jansky units and then gridded to the same
resolution as the data, and fed through the same KDE
pipeline. They therefore represent a ‘true’ 21 cm signal,

whereby the effects of the instrument are not included,
and are therefore indicative plots of the moments for the
21 cm signal. The mean, skewness and kurtosis all have
values of ~ 0.01-0.4 across the parameter space. The
21cmFAST boxes are small compared with the MWA beam
size, yielding fewer samples to accurately estimate the
distribution function. This leads to over-estimates of the
moments due to the coarseness of the histograms, and
so these plots should be taken as showing upper limits
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Figure 9. EoRO field moments using the KDE distributions from the real parts of the Totals visibilities. The third and fourth moment
are dimensionless. The horizon power shown diagonally at the interface of the EoR Window and foreground wedge shows prominently
in the skewness and kurtosis, where power from large angle to the phase centre imprints highly non-Gaussian structure.

to the cosmological moments. As a comparison to Figure
11, where the ratio of the power spectrum to the second
moment for the data was demonstrated to show structured
differences, we compute the same ratio for the simulated
21 cm data. Figure 13 shows the same ratios. There is little
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difference observed between the two approaches. This is
partly owing to the high degree of Gaussianity in the data
extracted from 21cmFAST simulations, but also reflects
the smoothness of the expected signal when devoid of
instrumental effects. These results are encouraging, but not
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Figure 10. EoR1 field moments using the KDE distributions from the Totals visibilities. The third and fourth moment are dimensionless.
The horizon signal in the skewness and kurtosis is less prominent than in the EoRO, where the Galactic Centre resides at the horizon.

definitive, to demonstrate that use of the second moment

can be advantageous without signal loss.

5.3 Phase of moments

While the gridding of visibilities through the KDE cannot
retain phase information, the effective phase of the moments
can be extracted for each £, —k mode, where the phase here
encodes the relative angle between the real and imaginary
component moment values. Figures 14 and 15 display the
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Figure 11. Variance (second moment) and power spectrum for the EoR1 field (top), and ratio between the two (bottom). Computing
the second moment from the histograms improves the performance within the EoR window.

phase for each of the four moments and each observing field
(measured in degrees). A phase close to zero indicates equal
values for the real and imaginary components.

Strong non-zero phase values indicate differences be-
tween the two components and are suggestive of foreground
contamination (for modes with sufficient samples). Values
close to 90 degrees across the full parameter space for the
mean values and skewness reflect that most modes have
equal values in both the real and imaginary components, but
opposite sign (i.e., they exhibit near-uniform amplitudes of
~90 degrees). Foreground contamination is most obvious in
the variance and kurtosis. It is difficult to see whether the
phase adds more information than is available in the ampli-
tudes of the moments alone.
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5.4 Earth Mover’s Distance

To fully utilize the differences in the statistical properties
of foregrounds in different patches of the sky, the Earth
Mover’s Distance quantifies the degree of dis-similarity be-
tween the KDE distributions. Figure 16 displays the EMD
between EoRO and EoR1 for the totals and differences visi-
bilities. The differences EMDs are smooth across the param-
eter space, with values of 25, which can be compared with
the expectations from Equation 10, where (EMD) ~ 1.5.
The totals EMDs exhibits clear structure where the fore-
grounds differ between the two fields. This is particularly
prominent at the edge of the wedge, where large-scale fore-
grounds close to the horizon differ (EoRO contains horizon
emission from the Galaxy, whereas EoR1 contains the ex-
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Figure 12. 21 cm moments extracted from a 21cmFAST simulation of a brightness temperature cube centred at z=8.28. The cube is
Fourier Transformed and gridded to produce model visibilities, which are then fed into the same KDE software as the data. Aside from
the variance, which mimics the power spectrum, the other moments show little structure.

tended radio source Fornax A near the edge of the pri- and weighting. The apparent lower value of the totals EMD
mary beam). The EMD encodes the regions of the power compared with the differences EMD at k, ~ 0.02h Mpc™?,
spectrum where foregrounds are prominent and can be ex- ky ~0.11h Mpc~! is consistent with the expected variation
cised. It is not strong in the EoR Window, where one might (uncertainty) in the expected value, which is of comparable
hope that it could be used for foreground discrimination amplitude, i.e., AEMD~ 1.5.
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Figure 13. Variance (second moment) and power spectrum for the 21 c¢m simulation (top), and ratio between the two (bottom), for
comparison with Figure 11. For this simple simulation, where the data are highly Gaussian, there is little difference.

5.5 Spherically-averaged power spectrum

The previous sections have explored different statistics avail-
able from the KDEs, with a view to using the additional in-
formation to discriminate foregrounds from EoR signal. In
general, the EoR Window is the region of parameter space of
most interest to clean, because this region shows only moder-
ate foreground contamination, but also contains a relatively
large expected cosmological signal.

The results of Figure 11 suggest that use of the second
moment alone (compared with the typical CHIPS-like esti-
mator) can provide improvement in the EoR Window. Moti-
vated by this, we first compute the dimensionless spherically-
averaged power spectrum using only thermal noise weight-
ing, but for different fields. Figure 17 displays the power
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spectra using thermal noise-only weighting, but leveraging
differences between the two observing fields and the KDE
moments analysis. To do this, we take the KDE histograms
for a given k1 — kj cell for each of the observing fields and
form the narrowest histogram from the combined datasets,
thereby excising measurements that are not consistent be-
tween the two fields. While this appears to be a severe cut, in
practise, this only removes portions of each histogram that
are at the extrema. After excision, both fields are left with
knowledge of the other field’s information, such that differ-
ences in the foreground statistics have been identified and
reduced. The KDE histograms such that the second moment
is computed from:

felean = min [fEor0, fEor1] - (13)
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Figure 14. Phase for the first two moments and each observing field (measured in degrees). A phase close to zero indicates equal values
for the real and imaginary components. The mean shows consistent offsets for the real and imaginary components, due to that statistic
using all data equally, whereas the variance shows departures, consistent with non-stochastic foreground sources away from phase centre

having a defined and different real and imaginary part.

The figure displays (blue) Regular delay spectrum; (black)
EoRO field second moment; (red) EoR1 field second moment;
(green) cleaned second moment using differences between
EoR0O and EoR1; (dashed blue) thermal noise and thermal
noise+sample variance. The excision of inconsistent parts of
the histograms (green) yields some small improvement at
low k, but is less useful than the second moment alone at
higher k values. These results demonstrate that accessing the
second moment alone can remove field-unique foregrounds
(and any non-Gaussian cosmological signal), and that use
of information from two observing fields offers moderate im-
provement. The former yields an improvement by a factor
of 2-3 in power for k < 0.3k Mpc™!, while the latter yields
factors of 1-2. The sample variance curve also demonstrates
that these modes have well-sampled statistics in order for
the KDE to yield reliable distributions.

We now focus on using the cleanest second moments
(the histograms cleaned of large flux density values that

are inconsistent between the two observing fields and there-
fore hypothesised to be due to foregrounds), and change the
weighting to include some of the other statistics explored in
this work: first, third and fourth moments, EMD and phase
of the second moment. For example, weighting by thermal
noise and the EMD yields weights for cell i:

1
L 1 o/EMD|’

Wiherm

Wi = (14)

where « scales the absolute EMD value to be of compa-
rable amplitude to the thermal noise weights. Figure 18
shows five curves with different weightings: (black) ther-
mal noise weighting; (red) weighting including thermal, non-
zero mean, skewness and kurtosis; (green) weighting includ-
ing thermal, non-zero kurtosis; (blue) weighting including
phase of second moment; (blue dashed) weighting including
thermal and EMD. There are moderate differences in the
range k = 0.1 —0.4h Mpc~!, but the main region of interest
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Figure 15. Phase for the third and fourth moments and each observing field (measured in degrees). A phase close to zero indicates

equal values for the real and imaginary components.

(k ~ 0.1h Mpc™') is not impacted by the different weighting.
These statistics are therefore not providing significant adds-
tional information, suggesting that use of the second mo-
ment alone captures most of the improvement. This can be
understood as follows: the second moment, by construction,
ignores any low-level tails, non-zero mean or large-Janksy
values in the histogram. These are the measurements that
are mathematically favoured in calculation of the kurtosis
and skewness, and therefore use of these statistics in the
weighting is only down-weighting cells that are already un-
favoured. Similarly, the EMD shows large values in the same
parts of parameter space, because it is capturing informa-
tion about measurements against which the second moment
is robust. Similar results are found when the thermal noise
is removed from the weighting entirely, and the additional
statistics only are used. Use of the phase of the second mo-
ment offers some advantages at select k¥ modes. This can be
seen in the phase of the second moment (Figure 14, lower) in
the k., =0.01-0.02hMpc !, l<:||:0.1—0.2hMpc_1 region, where
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the phase is large further into the EoR Window than other
statistics are showing contamination (cf Figure 16).

We note that these data processed through the CHIPS
estimator yield power estimates that are a factor of 2—4 bet-
ter than the delay space estimator. This is a generic re-
sult because CHIPS correctly handles the beam gridding.
A future KDE approach with a similar uv-gridded estima-
tor could be expected to yield improvement again over the
CHIPS estimator, because its improvement stems from its
ability to clean non-Gaussian foregrounds that are otherwise
captured in a normal visibility-squaring approach (a group
to which CHIPS and the delay space estimator both belong).

6 DISCUSSION AND CONCLUSIONS

The moments analysis, phase of moments and EMD are all
shown to contain information about foregrounds and non-
Gaussian components. The EMD also has the advantage of
not assuming Gaussianity of the underlying signal, preserv-
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Figure 16. Earth Mover’s distance between histogrammed totals (left) and differences (right) visibilities from the two observing fields.
Clearly the foreground-dominated regions are prominent with this metric. The apparent lower value of the totals EMD compared with
the differences EMD at k; ~ 0.02h Mpc~1, k| ~0.11h Mpc~! is consistent with the expected variation in the expected value, which is

of comparable amplitude.

ing the full cosmological distribution function of tempera-
ture fluctuations. However, in the spherically-averaged anal-
ysis, these statistics did not offer improvement when used in
the weights applied to each cell before spherical averaging.

Instead, the ability to directly access the second mo-
ment through the KDE analysis allowed for factors of 2—3
improvement in power in the region of interesting modes.
This is due to the second moment being able to ignore large-
flux density non-Gaussian foreground-contaminated data,
unlike the typical power spectrum estimator, which incor-
porates all data blindly. However, this also destroys non-
Gaussian 21 cm signal power.

In this work we emphasise the usefulness of compar-
ing data from two independent observing fields as an av-
enue to robustly discriminate statistically-dissimilar fore-
grounds from statistically-similar cosmological signal, par-
ticularly when the avenues can be agnostic to the form of the
EoR temperature fluctuation distribution function. The sig-
nal is expected to be non-Gaussian with a non-zero third mo-
ment (skewness), a factor ignored by power spectrum anal-
ysis (the variance is expected to contain most of the infor-
mation, and so this choice is generally warranted for current
experiments). Guided by the preliminary results shown here,
in future work, additional statistics will be developed based
on the form of the KDE distribution functions, which may
yield more promising discriminators for foregrounds and cos-
mological signal.

In future, the KDE approach can be extended to apply
to a uv-gridded power spectrum estimator, such as CHIPS,
which is able to be used for cosmological purposes because it
truly estimates power in k1 — k. There is no methodological
impediment to this approach, but it is computationally more
expensive than the delay spectrum. In this work, the delay
spectrum estimator yields results that are a factor of 2-
4 worse than a CHIPS estimator, and we would therefore
expect that a future gridded KDE approach may yield a

factor of 2-3 improvement over the CHIPS estimate, thereby
making it relevant for current experiments.
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Figure 18. Spherically-averaged dimensionless power spectra using weightings based on statistics, applied to the cleaned second moment
using differences between EoRO and EoR1 (green line from Figure 17). (Black) thermal noise weighting; (red) weighting including thermal,
non-zero mean, skewness and kurtosis; (green) weighting including thermal, non-zero kurtosis; (blue) weighting including phase of second
moment; (blue dashed) weighting including thermal and EMD.
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