13 research outputs found

    Advanced Processing of Food Waste Based Digestate for Mitigating Nitrogen Losses in a Winter Wheat Crop

    Get PDF
    The anaerobic digestion of food waste converts waste products into ‘green’ energy. Additionally, the secondary product from this process is a nutrient-rich digestate, which could provide a viable alternative to synthetically-produced fertilisers. However, like fertilisers, digestate applied to agricultural land can be susceptible to both ammonia (NH3) and nitrous oxide (N2O) losses, having negative environmental impacts, and reducing the amount of N available for crop uptake. Our main aim was to assess potential methods for mitigating N losses from digestate applied to a winter wheat crop and subsequent impact on yield. Plot trials were conducted at two UK sites, England (North Wyke-NW) and Wales (Henfaes-HF), to assess NH3 and N2O losses, yield and N offtake following a single band-spread digestate application. Treatments examined were digestate (D), acidified-digestate (AD), digestate with the nitrification inhibitor DMPP (D+NI), AD with DMPP (AD+NI), and a zero-N control (C). Determination of N losses was conducted using wind tunnels for NH3, and static manual and automatic chambers for N2O. The N offtake in both grain and straw was also measured. Ammonium nitrate (NH4NO3) fertiliser N response plots (from 75 to 300 kg N ha−1) were included to compare yields with the organic N source. Cumulative NH3-N losses were 27.6 % from D and D+NI plots and 1.5 % for AD and AD+NI of the total N applied, a significant reduction of 95 % with acidification. Cumulative N2O losses varied between 0.13 and 0.35 % of the total N applied and were reduced by 50 % with the use of DMPP. Grain yields for the digestate treatments were 7.52 – 9.21 and 7.23 – 9.23 t DM ha−1 at HF and NW, respectively. Yields were greater from the plots receiving acidified‐digestate relative to the non-acidified treatments but the differences were not significant. The yields (as a function of the N applied with each treatment) obtained for the digestate treatments ranged between 84.2 % (D+NI) and 103.6 % (D) of the yields produced by the same N rate from an inorganic source at HF. Advanced processing of digestate reduced N losses providing an environmentally sound option for N-management

    Effects of urease and nitrification inhibitors on soil N, nitrifier abundance and activity in a sandy loam soil

    Get PDF
    Inhibitors of urease and ammonia monooxygenase can limit the rate of conversion of urea to ammonia and ammonia to nitrate, respectively, potentially improving N fertilizer use efficiency and reducing gaseous losses. Winter wheat grown on a sandy soil in the UK was treated with urea fertilizer with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT), the nitrification inhibitor dicyandiamide (DCD) or a combination of both. The effects on soil microbial community diversity, the abundance of genes involved in nitrification and crop yields and net N recovery were compared. The only significant effect on N-cycle genes was a transient reduction in bacterial ammonia monooxygenase abundance following DCD application. However, overall crop yields and net N recovery were significantly lower in the urea treatments compared with an equivalent application of ammonium nitrate fertilizer, and significantly less for urea with DCD than the other urea treatments

    Effects of hotter, drier conditions on gaseous losses from nitrogen fertilisers

    Get PDF
    Global warming is expected to cause hotter, drier summers and more extreme weather events including heat waves and droughts. A little understood aspect of this is its effects on the efficacy of fertilisers and related nutrient losses into the environment. We explored the effects of high soil temperature (>25 °C) and low soil moisture (<40% water filled pore space; WFPS) on emissions of ammonia (NH3) and nitrous oxide (N2O) following application of urea to soil and the efficacy of urease inhibitors (UI) in slowing N losses. We incubated soil columns at three temperatures (15, 25, 35 °C) and three soil moisture contents (20, 40, 60% WFPS) with urea applied on the soil surface with and without UIs, and measured NH3 and N2O emissions using chambers placed over the columns. Four fertiliser treatments were applied in triplicate in a randomised complete block design: (1) urea; (2) urea with a single UI (N-(n-butyl) thiophosphoric triamide (NBPT); (3) urea with two UI (NBPT and N-(n-propyl) thiophosphoric triamide; NPPT); and (4) a zero N control. Inclusion of UI with urea, relative to urea alone, delayed and reduced peak NH3 emissions. However, the efficacy of UI was reduced with increasing temperature and decreasing soil moisture. Cumulative NH3 emission did not differ between the two UI treatments for a given set of conditions and was reduced by 22–87% compared with urea alone. Maximum cumulative NH3 emission occurred at 35 °C and 20% WFPS, accounting for 31% of the applied N for the urea treatment and 25%, on average for the UI treatments. Urease inhibitors did not influence N2O emissions; however, there were interactive impacts of temperature and moisture, with higher cumulative emissions at 40% WFPS and 15 and 25 °C accounting for 1.85–2.62% of the applied N, whereas at 35 °C there was greater N2O emission at 60% WFPS. Our results suggest that inclusion of UI with urea effectively reduces NH3 losses at temperatures reaching 35 °C, although overall effectiveness decreases with increasing temperature, particularly under low soil moisture conditions

    Progress on improving Agricultural Nitrogen use efficiency: UK-China viortual joint centers on Nitrogen Agronomy

    Get PDF
    Two virtual joint centers for nitrogen agronomy were established between the UK and China to facilitate collaborative research aimed at improving nitrogen use efficiency (NUE) in agricultural production systems and reducing losses of reactive N to the environment. Major focus areas were improving fertilizer NUE, use of livestock manures, soil health, and policy development and knowledge exchange. Improvements to fertilizer NUE included attention to application rate in the context of yield potential and economic considerations and the potential of improved practices including enhanced efficiency fertilizers, plastic film mulching and cropping design. Improved utilization of livestock manures requires knowledge of the available nutrient content, appropriate manure processing technologies and integrated nutrient management practices. Soil carbon, acidification and biodiversity were considered as important aspects of soil health. Both centers identified a range of potential actions that could be taken to improve N management, and the research conducted has highlighted the importance of developing a systemslevel approach to assessing improvement in the overall efficiency of N management and avoiding unintended secondary effects from individual interventions. Within this context, the management of fertilizer emissions and livestock manure at the farm and regional scales appear to be particularly important targets for mitigation

    Field experiments for quality digestate and compost in agriculture: Work Package 2 Report - Digestate Nitrogen Supply and Environmental Emissions

    No full text
    The mean nitrogen (N) use efficiency (NUE) of spring bandspread food-based digestate measured in replicated field experiments was 54 ± 7% of total N applied. This was reduced to 13 ± 4% of total N applied when food-based digestate was bandspread in the autumn, highlighting the effect of N losses via overwinter nitrate leaching. Manure-based digestate applied in spring had a mean NUE of 52 ± 8% which decreased to 15 ± 6% of total N applied for autumn applications. For both materials, there was considerable variation between the NUE results obtained from the individual experimental sites; however, this was not surprising given the complex systems represented by the 15 experimental sites, including differences in soils, cropping, weather and digestate properties, and is commonly observed in experiments with other organic materials (e.g. livestock slurries)

    Image_1_Advanced Processing of Food Waste Based Digestate for Mitigating Nitrogen Losses in a Winter Wheat Crop.pdf

    No full text
    <p>The anaerobic digestion of food waste converts waste products into “green” energy. Additionally, the secondary product from this process is a nutrient-rich digestate, which could provide a viable alternative to synthetically-produced fertilizers. However, like fertilizers, digestate applied to agricultural land can be susceptible to both ammonia (NH<sub>3</sub>) and nitrous oxide (N<sub>2</sub>O) losses, having negative environmental impacts, and reducing the amount of N available for crop uptake. Our main aim was to assess potential methods for mitigating N losses from digestate applied to a winter wheat crop and subsequent impact on yield. Plot experiments were conducted at two UK sites, England (North Wyke-NW) and Wales (Henfaes-HF), to assess NH<sub>3</sub> and N<sub>2</sub>O losses, yield and N offtake following a single band-spread digestate application. Treatments examined were digestate (D), acidified-digestate (AD), digestate with the nitrification inhibitor DMPP (D+NI), AD with DMPP (AD+NI), and a zero-N control (C). Ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>) fertilizer N response plots (from 75 to 300 kg N ha<sup>−1</sup>) were included to compare yields with the organic N source. Across both sites, cumulative NH<sub>3</sub>-N losses were 27.6% from D and D+NI plots and 1.5% for AD and AD+NI of the total N applied, a significant reduction of 95% with acidification. Cumulative N<sub>2</sub>O losses varied between 0.13 and 0.35% of the total N applied and were reduced by 50% with the use of DMPP although the differences were not significant. Grain yields for the digestate treatments were 7.52–9.21 and 7.23–9.23 t DM ha<sup>−1</sup> at HF and NW, respectively. Yields were greater from the plots receiving acidified-digestate relative to the non-acidified treatments but the differences were not significant. The yields obtained for the digestate treatments ranged between 84.2% (D+NI) and 103.6% (D) of the yields produced by the same N rate from an inorganic source at HF. Advanced processing of digestate reduced N losses providing an environmentally sound option for N management.</p

    Table_2_Advanced Processing of Food Waste Based Digestate for Mitigating Nitrogen Losses in a Winter Wheat Crop.PDF

    No full text
    <p>The anaerobic digestion of food waste converts waste products into “green” energy. Additionally, the secondary product from this process is a nutrient-rich digestate, which could provide a viable alternative to synthetically-produced fertilizers. However, like fertilizers, digestate applied to agricultural land can be susceptible to both ammonia (NH<sub>3</sub>) and nitrous oxide (N<sub>2</sub>O) losses, having negative environmental impacts, and reducing the amount of N available for crop uptake. Our main aim was to assess potential methods for mitigating N losses from digestate applied to a winter wheat crop and subsequent impact on yield. Plot experiments were conducted at two UK sites, England (North Wyke-NW) and Wales (Henfaes-HF), to assess NH<sub>3</sub> and N<sub>2</sub>O losses, yield and N offtake following a single band-spread digestate application. Treatments examined were digestate (D), acidified-digestate (AD), digestate with the nitrification inhibitor DMPP (D+NI), AD with DMPP (AD+NI), and a zero-N control (C). Ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>) fertilizer N response plots (from 75 to 300 kg N ha<sup>−1</sup>) were included to compare yields with the organic N source. Across both sites, cumulative NH<sub>3</sub>-N losses were 27.6% from D and D+NI plots and 1.5% for AD and AD+NI of the total N applied, a significant reduction of 95% with acidification. Cumulative N<sub>2</sub>O losses varied between 0.13 and 0.35% of the total N applied and were reduced by 50% with the use of DMPP although the differences were not significant. Grain yields for the digestate treatments were 7.52–9.21 and 7.23–9.23 t DM ha<sup>−1</sup> at HF and NW, respectively. Yields were greater from the plots receiving acidified-digestate relative to the non-acidified treatments but the differences were not significant. The yields obtained for the digestate treatments ranged between 84.2% (D+NI) and 103.6% (D) of the yields produced by the same N rate from an inorganic source at HF. Advanced processing of digestate reduced N losses providing an environmentally sound option for N management.</p
    corecore