319 research outputs found

    A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region

    Get PDF
    The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. The integrated strengths of the p- and s-shell are compared with a Distorted Wave Impulse Approximation calculation. The s-shell strength and shape are compared with a Hartree Fock-Random Phase Approximation calculation. The DWIA calculation overestimates the cross sections for p- and s-shell proton knockout as expected, but surprisingly agrees with the extracted R_LT value for both shells. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.

    Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction

    Get PDF
    The mean square polarizability radii of the proton have been measured for the first time in a virtual Compton scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2=0.06 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. The data support the dominance of mesonic effects in the polarizabilities, and the increase of beta with increasing Q2 is evidence for the cancellation of long-range diamagnetism by short-range paramagnetism from the pion cloud

    Threshold Electrodisintegration of ^3He

    Get PDF
    Cross sections were measured for the near-threshold electrodisintegration of ^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and prior measurements the transverse and longitudinal response functions R_T and R_L were deduced. Comparisons are made against previously published and new non-relativistic A=3 calculations using the best available NN potentials. In general, for q<2 fm^{-1} these calculations accurately predict the threshold electrodisintegration of ^3He. Agreement at increasing q demands consideration of two-body terms, but discrepancies still appear at the highest momentum transfers probed, perhaps due to the neglect of relativistic dynamics, or to the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review

    Investigation of the conjectured nucleon deformation at low momentum transfer

    Full text link
    We report new precise H(e,ep)π0(e,e^\prime p)\pi^0 measurements at the Δ(1232)\Delta(1232) resonance at Q2=0.127Q^2= 0.127 (GeV/c)2^2 using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude (E2E2) of the γNΔ\gamma^* N\to\Delta transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios EMR=(2.3±0.3stat+sys±0.6model)EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})% and CMR=(6.1±0.2stat+sys±0.5model)CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})% and for M1+3/2=(41.4±0.3stat+sys±0.4model)(103/mπ+)M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+}). They give credence to the conjecture of deformation in hadronic systems favoring, at low Q2Q^2, the dominance of mesonic effects.Comment: 4 pages, 1figur

    Measurement of the Partial Cross Sections s(TT), s(LT) and [s(T)+epsilon*s(L)] of the p(e,e' pi+)n Reaction in the Delta(1232) Resonance

    Full text link
    We report new precision p(e,e' pi+})n measurements in the Delta(1232) resonance at Q2 = 0.127(GeV/c)2 obtained at the MIT-Bates Out-Of-Plane scattering facility. These are the lowest, but non-zero, Q2 measurements in the pi+ channel. The data offer new tests of the theoretical calculations, particularly of the background amplitude contributions. The chiral effective field theory and Sato-Lee model calculations are not in agreement with this experiment

    Measurement of the Transverse-Longitudinal Cross Sections in the p (e,e'p)pi0 Reaction in the Delta Region

    Get PDF
    Accurate measurements of the p(e,e?p)pi0 reaction were performed at Q^2=0.127(GeV/c)^2 in the Delta resonance energy region. The experiments at the MIT-Bates Linear Accelerator used an 820 MeV polarized electron beam with the out of plane magnetic spectrometer system (OOPS). In this paper we report the first simultaneous determination of both the TL and TL? (``fifth" or polarized) cross sections at low Q^{2} where the pion cloud contribution dominates the quadrupole amplitudes (E2 and C2). The real and imaginary parts of the transverse-longitudinal cross section provide both a sensitive determination of the Coulomb quadrupole amplitude and a test of reaction calculations. Comparisons with model calculations are presented. The empirical MAID calculation gives the best overall agreement with this accurate data. The parameters of this model for the values of the resonant multipoles are |M_{1+}(I=3/2)|= (40.9 \pm 0.3)10^{-3}/m_pi, CMR= C2/M1= -6.5 \pm 0.3%, EMR=E2/M1=-2.2 \pm 0.9%, where the errors are due to the experimental uncertainties.Comment: 10 pages, 3 figures, minor corrections and addition

    T and F asymmetries in π0 photoproduction on the proton

    Get PDF
    The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed

    Relativistic effects and two-body currents in 2H(e,ep)n^{2}H(\vec{e},e^{\prime}p)n using out-of-plane detection

    Full text link
    Measurements of the 2H(e,ep)n{^2}H(\vec{e},e^{\prime}p)n reaction were performed using an 800-MeV polarized electron beam at the MIT-Bates Linear Accelerator and with the out-of-plane magnetic spectrometers (OOPS). The longitudinal-transverse, fLTf_{LT} and fLTf_{LT}^{\prime}, and the transverse-transverse, fTTf_{TT}, interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2^2=0.15 (GeV/c)2^2. On comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions, and the importance of the two-body meson-exchange currents and isobar configurations. We demonstrate that these effects can be disentangled and studied by extracting the interference response functions using the novel out-of-plane technique.Comment: 4 pages, 4 figures, and submitted to PRL for publicatio

    Measurement of the transverse target and beam-target asymmetries in η\eta meson photoproduction at MAMI

    Get PDF
    We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γpηp\vec \gamma \vec p\to\eta p reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η\eta meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.Comment: 5 pages, 3 figures, accepted for publication in PR

    Measurements of double-polarized compton scattering asymmetries and extraction of the proton spin polarizabilities

    Get PDF
    The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γE1E1=−3.5±1.2, γM1M1=3.16±0.85, γE1M2=−0.7±1.2, and γM1E2=1.99±0.29, in units of 10−4  fm4
    corecore