257 research outputs found

    A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions

    Get PDF
    We have performed new global regression analyses to calibrate a model of equilibrium between clinopyroxene and co-existing melt. Then we have applied this model to a restricted but important range of clinopyroxene and melt compositions from Mt. Etna volcano. The degree of disequilibrium is determined through the comparison between components “predicted” for clinopyroxene via regression analyses of clinopyroxene-liquid pairs in equilibrium conditions, with those “measured” in the analyzed crystals. The model is tested using compositions not included into the calibration dataset, i.e., clinopyroxene-melt pairs obtained from equilibrium and cooling rate experiments conducted at ambient pressure on an Etnean trachybasalt. The experiments were duplicated at the NNO+1.5 and QFM oxygen buffering conditions estimated for magmas at Mt. Etna. Both equilibrium and disequilibrium clinopyroxene-melt pairs from the experiments were also used as input data for one of the most recent thermometers based on the Jd-DiHd exchange reaction. Results from calculations indicate that, under rapid cooling rate conditions, clinopyroxenes do not equilibrate with the melt. Consequently, the thermometers predict higher crystallization temperatures compared to the final experimental temperature, prior to rapid quenching of the experiment. The systematic difference between expected and measured compositions and temperatures allows us to calibrate a model that describes undercooling based on disequilibrium exchange reactions. We use this new tool to estimate the thermal history of naturally cooled lava flows and dikes at Mt. Etna volcano

    Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5

    Get PDF
    Histatin-5 is a peptide secreted in the human saliva, which possesses powerful antifungal activity. Previous studies have shown that this peptide exerts its candidacidal activity, through the inhibition of both mitochondrial respiration and the formation of reactive oxygen species. The purpose of the present study was to investigate the biological consequences of histatin-5 action on mammalian mitochondria to verify if the toxic mechanism exerted on mitochondria from Candida albicans is an exclusive for fungal cells. Moreover, hypothesising that the damage exerted on mitochondria may induce programmed cellular death pathways, we evaluated two main markers of apoptosis: the mitochondrial membrane potential (DeltaPsi) and the release of cytochrome c. The results obtained show that exposure of isolated mammalian mitochondria to histatin-5 determines: (i) a large inhibition of the respiratory chain at the level of complex 1, (ii) a slight decrease in the mitochondrial membrane potential, and (iii) no release of cytochrome c. (C) 2003 Elsevier Inc. All rights reserved

    Carbonate assimilation in magmas: a reappraisal based on experimental petrology

    Get PDF
    The main effect of magma-carbonate interaction on magma differentiation is the formation of a silica-undersaturated, alkali-rich residual melt. Such a desilication process was explained as the progressive dissolution of CaCO3 in melt by consumption of SiO2 and MgO to form diopside sensu stricto. Magma chambers emplaced in carbonate substrata, however, are generally associated with magmatic skarns containing clinopyroxene with a high Ca-Tschermak activity in their paragenesis. Data are presented from magma-carbonate interaction experiments, demonstrating that carbonate assimilation is a complex process involving more components than so far assumed. Experimental results show that, during carbonate assimilation, a diopside-hedenbergite-Ca-Tschermak clinopyroxene solid solution is formed and that Ca-Tschermak/diopside and hedenbergite/diopside ratios increase as a function of the progressive carbonate assimilation. Accordingly, carbonate assimilation reaction should be written as follows, taking into account all the involved magmatic components: CaCO3solid+SiO2melt+MgOmelt+FeOmelt+Al2O3melt → (Di-Hd-CaTs)sssolid+CO2fluid The texture of experimental products demonstrates that carbonate assimilation produces three-phases (solid, melt, and fluid) whose main products are: i) diopside-hedenbergite-Ca-Tschermak clinopyroxene solid solution; ii) silica-undersaturated CaO-rich melt; and iii) C-O-H fluid phase. The silica undersaturation of the melt and, more importantly, the occurrence of a CO2-rich fluid phase, must be taken into account as they significantly affect partition coefficients and the redox state of carbonated systems, respectively

    CO2 bubble generation and migration during magma-carbonate interaction

    Get PDF
    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to beliberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions

    CO2 bubble generation and migration during magma–carbonate interaction

    Get PDF
    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions

    Intrinsic solidification behaviour of basaltic to rhyolitic melts: a cooling rate experimental study

    Get PDF
    Dynamic cooling-induced solidification experiments were run using six silicate glasses along the basalt - rhyolite join (B100= 100 wt % of basalt, R100= 100 wt % of rhyolite), i.e. B100, B80R20, B60R40, B40R60, B20R80 and R100; the glasses directly quenched from 1300 °C after a dwell of 120 minutes (experiment E0) contain 50-400 ppm H2O, << 1 area% μm-sized bubble, and Fe2+/Fetot between 0.34 and 0.46. Experiments were performed in Pt capsules at room pressure and fO2 of air, between 1300 and 800 °C using three different cooling rates of 0.0167, 3 and 30 °C/min; these cooling rates were run two times: E1-E2 experiments at 0.0167°C/min, S1-E3 at 3 °C/min, and E4-E5 at 30 °C/min. In experiments E1 to E5, samples were annealed for 120 minutes at 1300 °C, whereas in the experiment S1 the samples were firstly heated for 30 minutes at 1400 °C followed by a dwell time of 2400 minutes at 1300°C before cooling. In the experiments a preferential crystallization was not observed at the melt/gas interface. B100, B80R20 and B60R40 run-products have a low tendency to preferentially crystallize on Pt walls, while B40R60, B20R80 and R100 are not affected by the presence of Pt substrata. All run-products show very homogeneous textures, except for B60R40 and B40R60 at 0.0167°C/min in the E1 experiment. The duplicates of B40R60 and B60R40 at 0.0167°C/min and B100 at 30 °C/min show relatively large differences in crystal content (> 4 and < 14 area%). B40R60 and B60R40 duplicated run-products have the same amount of earlycrystallized clinopyroxene and spinel, but different contents in lately-formed plagioclase. The run-products with the same starting composition from E3-S1 (3 °C/min) show a high reproducibility in terms of crystal shape, size, and amount (< 4 area%). This demonstrates that the crystallization path is not affected by the different heat treatment above the liquidus temperature, i.e. the time scale of structural re-equilibration (relaxation) and chemical rehomogenization are shorter than our experimental time scale. Possible chemicalheterogeneities on a length scale of several micrometers for R100 and several hundreds of micrometers for B100 can be removed at 1300 °C within 120 minutes. A heat treatment at 1300 °C for 120 minutes significantly reduces the amount of μm-sized bubbles, potentially responsible for the onset of nucleation and unreveals the intrinsic solidification of silicate melts. The experimental reproducibility is low when the cooling path intersects the tip of the time-temperature-transformation (TTT) curves, i.e. when the nucleation rate is near its maximum (Imax). In that case, even small thermal variations in cooling rate and local composition can have large effects on phase abundance and crystal size. Dynamic crystallization experiments can be properly interpreted and compared only if they are texturally homogeneous and the physico-chemical state of the superheated silicate liquid is known. The solidification conditions used in this study mirror those of aphyric lavas and dikes emplaced at shallower crustal levels

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa

    Thyroid Hormone T3 Counteracts STZ Induced Diabetes in Mouse

    Get PDF
    This study intended to demonstrate that the thyroid hormone T3 counteracts the onset of a Streptozotocin (STZ) induced diabetes in wild type mice. To test our hypothesis diabetes has been induced in Balb/c male mice by multiple low dose Streptozotocin injection; and a group of mice was contemporaneously injected with T3. After 48 h mice were tested for glucose tolerance test, insulin serum levels and then sacrified. Whole pancreata were utilized for morphological and biochemical analyses, while protein extracts and RNA were utilized for expression analyses of specific molecules. The results showed that islets from T3 treated mice were comparable to age- and sex-matched control, untreated mice in number, shape, dimension, consistency, ultrastructure, insulin and glucagon levels, Tunel positivity and caspases activation, while all the cited parameters and molecules were altered by STZ alone. The T3-induced pro survival effect was associated with a strong increase in phosphorylated Akt. Moreover, T3 administration prevented the STZ-dependent alterations in glucose blood level, both during fasting and after glucose challenge, as well as in insulin serum level. In conclusion we demonstrated that T3 could act as a protective factor against STZ induced diabetes

    Telomerase activity, estrogen receptors (α, β), Bcl-2 expression in human breast cancer and treatment response

    Get PDF
    BACKGROUND: The mechanism for maintaining telomere integrity is controlled by telomerase, a ribonucleoprotein enzyme that specifically restores telomere sequences, lost during replication by means of an intrinsic RNA component as a template for polymerization. Among the telomerase subunits, hTERT (human telomerase reverse transcriptase) is expressed concomitantly with the activation of telomerase. The role of estrogens and their receptors in the transcriptional regulation of hTERT has been demonstrated. The current study determines the possible association between telomerase activity, the expression of both molecular forms of estrogen receptor (ERα and ERβ) and the protein bcl-2, and their relative associations with clinical parameters. METHODS: Tissue samples from 44 patients with breast cancer were used to assess telomerase activity using the TRAP method and the expression of ERα, ERβ and bcl-2 by means of immunocytochemical techniques. RESULTS: Telomerase activity was detected in 59% of the 44 breast tumors examined. Telomerase activity ranged from 0 to 49.93 units of total product generated (TPG). A correlation was found between telomerase activity and differentiation grade (p = 0.03). The only significant independent marker of response to treatment was clinical stage. We found differences between the frequency of expression of ERα (88%) and ERβ (36%) (p = 0.007); bcl-2 was expressed in 79.5% of invasive breast carcinomas. We also found a significant correlation between low levels of telomerase activity and a lack of ERβ expression (p = 0.03). CONCLUSION: Lower telomerase activity was found among tumors that did not express estrogen receptor beta. This is the first published study demonstrating that the absence of expression of ERβ is associated with low levels of telomerase activity
    corecore