9 research outputs found

    The role of networks to overcome large-scale challenges in tomography : the non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives

    The role of adult education and learning policy in fostering societal sustainability

    Get PDF
    The idea of “sustainability” as a core value has slowly permeated policy and practice at governmental and institutional levels, in public and private policy. However, at times when social and economic crises have revealed the fragility of existing institutions and policies, it is important to consider how sustainability is – and could be – integrated into educational policies. In this theoretical contribution to a special issue on “Societal sustainability”, the authors draw on available literature and knowledge. They begin their paper by summarising the conditions under which the concept of “sustainability” entered political discourse in the early 1970s and outline how it has influenced educational research. They then introduce the longstanding debate about the relative role of tradition (in terms of traditional cultural and social order) and change (in terms of efforts to provide learning opportunities for everyone) in adult education. Finally, they argue for a rethinking of the ontology of sustainability: this, they suggest, can shed new light on its relationships with adult education and learning and social justice

    Discovery of the 3‑Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β‑Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease

    No full text
    Verubecestat <b>3</b> (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer’s disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of <b>3</b>, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization

    Discovery of the 3‑Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β‑Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease

    No full text
    Verubecestat <b>3</b> (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer’s disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of <b>3</b>, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization

    Structure-Based Design of an Iminoheterocyclic β‑Site Amyloid Precursor Protein Cleaving Enzyme (BACE) Inhibitor that Lowers Central Aβ in Nonhuman Primates

    No full text
    We describe successful efforts to optimize the in vivo profile and address off-target liabilities of a series of BACE1 inhibitors represented by <b>6</b> that embodies the recently validated fused pyrrolidine iminopyrimidinone scaffold. Employing structure-based design, truncation of the cyanophenyl group of <b>6</b> that binds in the S3 pocket of BACE1 followed by modification of the thienyl group in S1 was pursued. Optimization of the pyrimidine substituent that binds in the S2′–S2″ pocket of BACE1 remediated time-dependent CYP3A4 inhibition of earlier analogues in this series and imparted high BACE1 affinity. These efforts resulted in the discovery of difluorophenyl analogue <b>9</b> (MBi-4), which robustly lowered CSF and cortex Aβ<sub>40</sub> in both rats and cynomolgus monkeys following a single oral dose. Compound <b>9</b> represents a unique molecular shape among BACE inhibitors reported to potently lower central Aβ in nonrodent preclinical species

    Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector

    No full text
    corecore