55 research outputs found

    Guidelines for postoperative care in gynecologic/oncology surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations - Part II.

    Get PDF
    This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    Carbonyl and Thiocarbonyl Compounds. VI. 1

    No full text

    Synthesis of Trans- and cis

    No full text

    An investigation of Sodium Fusidate and recombinant Cytochrome P450 enzymes inhibition in-vitro

    No full text
    BACKGROUND: Sodium fusidate (fusidic acid) is an antimicrobial agent that is used in the treatment of staphylococcal and streptococcal infections. Several case reports have noted a drug interaction between sodium fusidate and CYP3A4 metabolised statins, leading to statin toxicity. It is unclear whether sodium fusidate has the potential to cause interactions with other cytochrome P450 enzymes. OBJECTIVE: To investigate the effects of sodium fusidate on recombinant cytochrome P450 enzymes (1A2, 2C9, 2C19, 2D6 and 3A4) in-vitro. METHODS: A range of sodium fusidate concentrations (0.1µM, 1µM, 10µM, 100µM, 300µM, 1000µM and 10000µM) were tested to examine its activity on rCYP1A2, rCYP2C9, rCYP2C19, rCYP2D6 and rCYP3A4 using a luminescent assay with a luciferin substrate. RESULTS: Sodium fusidate inhibited all enzymes at tested concentrations which are relevant to those likely to be achieved in clinical practice. Further, sodium fusidate was found to be a time-dependent inhibitor of all the tested isoenzymes, with the exception of rCYP2C9. CONCLUSION: These findings suggest that there is a potential for sodium fusidate to cause drug interactions when used with other agents that are substrates for rCYP1A2, rCYP2C9, rCYP2C19, rCYP2D6 or rCYP3A4. Understanding the basis of this potential drug interaction will assist in safer use of sodium fusidate in clinical practice
    corecore